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Mathematics requires deep thinking. It may be educationally beneficial if pupils are
aware of their own shortcomings in understanding. We investigated how pupils of
lower-secondary schools in Prague perceive their understanding mathematics, with
a particular focus on whether they have distinctive attitudes towards the quality
of their understanding. In the first, quantitative stage, a diagnostic test of surface
knowledge and a questionnaire about mathematical understanding were developed
and administrated. Using a factor analysis, t-tests and methods of descriptive statis-
tics, we created indices of understanding and ascertained that the respondents were
often mixing various levels of depth of their understanding mathematics. The qual-
ity of a pupil’s understanding was also influenced by many latent factors, including
strategic approach to learning, volition to remember facts, ability to solve tasks inde-
pendently, perfectionism, and also, to some extent, the parental view of mathematics.
In the second stage of the research, some individual semi-structured interviews were
conducted to illustrate and validate the results. The findings of the study highlight
the need to raise pupils’ awareness of the quality of their mathematical understand-
ing, since it may influence their willingness to deepen their knowledge in mathematics
and subsequently their school performance.
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1 Introduction

Understanding mathematics requires deep thinking and understanding, not only of isolated topics but
also connections between them. Understanding mathematics is not something which is either present
or absent, but rather we deal with the depth1 and level of pupils’ understanding (on depth see, e.g.,
Skemp, 1991; Star, 2005; Hiebert & Lefevre, 2009; Hejný, 2012, and Sierpinska, 1994 on ‘level’). Practising
teachers routinely speak about whether pupils understand or are deficient or lacking in their understanding
(Novotná & Janda, 2021). The question arises as to what extent the pupils are aware of what it means
to understand mathematics. This question is important as the realisation of the insufficiency of one’s
understanding is a prerequisite for deepening it successfully. If pupils are not aware of diverse levels
of understanding, they might not reach higher levels of reasoning, for example, generalization, and can
hardly be expected to make an effort to understand mathematics deeply (Hejný & Kuřina, 2009).
However, there seems to be a shortage of studies on pupils’ perception of their understanding mathe-

matics. Drawing on well-known dichotomies in understanding (relational/instrumental, procedural/con-
ceptual), we conceptualised the depth of understanding by distinguishing deep/surface understanding, and
added a strategic approach to understanding to interconnect the dichotomous nature of the above men-
tioned. With the help of a questionnaire and a diagnostic test, we determined groups of lower-secondary
pupils tending to deep/surface understanding or strategic approach to understanding. We described them
in terms of their approach to and perception of mathematics. In the qualitative, complementary, part of
our study, we conducted semi-structured interviews with pupils who showed some surface understanding
of their knowledge to illuminate their test and questionnaire results, gain more insight and to assess if
they were aware of deficiencies in their knowledge in mathematics and if they would like to deepen it.

2 Theoretical framework and literature review

Our study builds on literature related to the quality of understanding mathematics and the concept of
self-efficacy and attitudes.

2.1 Quality of pupils’ understanding mathematics

Early mathematics education research introduced dichotomies in understanding. Among the most influen-
tial ones are Skemp’s relational and instrumental understanding (Skemp, 1991), and Hiebert and Lefevre’s

1We use the word “depth” advisedly in the meaning “the quality of showing a clear and deep understanding of serious
matters”.
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procedural and conceptual knowledge (Hiebert & Lefevre, 2009) revisited by Star (2005). In the Czech
context, Hejný (2012) introduced the Theory of Generic Models which distinguishes between mechanical
and non-mechanical knowledge. What these dichotomies share2 is that they approach understanding at
either a deep or surface level.
Kieran (2013) notes that these dichotomies, often referred to as skills and understanding, are mutually

beneficial to each other and are not exclusive, but linked.

No longer can the two be viewed as separate entities. Nor is it sufficient to argue that concep-
tual understanding can lead to the meaningful development of procedural knowledge. Rather,
the elaboration of procedures has within itself a conceptual component. (ibid., p. 160)

According to Kieran, “procedural skills adapt over time as the conceptual domain to which they
are applied is broadened” (ibid., p. 161) and sometimes it is more efficient to solve a problem using an
algorithm we know well than to dissipate our energy thinking deeply about the concept.
With respect to Kieran’s objections, we will be using Entwistle and Entwistle’s framework and speak

about deep and surface understanding (not strictly dichotomous ones) to capture differences in under-
standing. Entwistle and Entwistle (1992) distinguish breadth and depth of understanding, the latter being
more relevant to our study.

‘Depth’ can be taken to describe the extent to which the student is able to provide an expla-
nation which would answer an examination question, or would satisfy an ‘expert’. It can be
seen to involve both the amount of relevant detail brought together and the strength of the
interconnectedness among the component parts. (Entwistle & Entwistle, 1992, p. 16)

In other words, the pupil with deep understanding can see connections in mathematics, knows when
and how to use an algorithm and can explain it. The pupil with surface understanding is able to use
the algorithm in restricted contexts (an ability we sometimes refer to in this paper as algorithmic under-
standing), may overgeneralize it to inappropriate contexts, and often learns it by heart.
It would be too simplistic to presume that a pupil tends strictly to either deep or surface understanding;

he/she might oscillate between them based on the context. For example, if a simple application of an
algorithm in similar contexts is sufficient for being successful at school, there is no need for the pupil to
make sense of it. This was observed by Entwistle and Entwistle (1992, pp. 17–18): “. . . the dichotomous
distinction between intentions to understand (deep approach), or to reproduce (surface approach), was
too limited to cover the range of comments found in our interviews.” The authors also mention that more
forms of understanding coexist at the same time in the same student. In such a case we refer to a strategic
approach to understanding3 (similarly to Mareš’s (1976) strategic approach to learning). Since research
has shown that the dichotomous view is not always sufficient, in our study, we focus on surface and deep
understanding as well as the strategic approach to understanding.

2.2 Attitudes and motivation

The role of motivation in learning is amply documented (e.g., Hejný, 2012; Hannula, 2014; Middleton,
2014; Muis et al., 2015) and pupils’ motivation for and attitudes to mathematics4 is related to their
achievement in mathematics (e.g., Hemmings et al., 2011; Ubuz & Aydinyer, 2017) and may affect pupils’
willingness to reach deep understanding. For example, Ubuz and Aydinyer (2017) showed a positive sig-
nificant correlation between striving for understanding and previous achievement in geometry for middle
school pupils.
Measuring the cognitive, affective and behavioural components of a pupil’s attitude presents a method-

ological problem. In qualitative research, researchers typically investigate cognitive and affective compo-
nents by posing open questions to pupils and/or observing their reactions when solving a task (e.g.,
Vorhölter et al., 2019). In quantitative research, questionnaires are often used, from which individual
statements can be interpreted, a semantic differential used, or indices created (Chvál, 2013). An example
is Code et al.’s study (2016) of university students’ attitudes towards mathematics. Their questionnaire
included 31 statements in 7 categories connected to attitudes: Growth Mindset, Real World, Confidence,
Interest, Persistence, Sense Making and Answers. The category of Sense Making concerns students’ at-
titudes towards acquiring deep understanding (e.g., In math, it is important for me to make sense out of
formulas and procedures before I use them) and we included its relevant elements in our questionnaire.

2Without any doubt, there are differences in these theories, more thoroughly described in Novotná (2020).
3Although Entwistle and Entwistle do not give a name to this approach, they use the word “strategic” as well.
4Mathematics is one of the least favourite and most difficult school subjects in pupils’ eyes (e.g., Hrabal & Pavelková,

2010; Chvál, 2013).
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2.3 Some intervening factors

Factors that influence whether pupils tend towards deep understanding or remain at the surface level
include their teacher’s personality and teaching style, the demands of the curriculum and the pupils’
background and disposition. It would be impossible for a single questionnaire to capture the factors in
their entirety, thus, we limited ourselves to self-efficacy and metacognition as the factors connected to
and influenced by pupils’ views and to the parental influence. These factors influenced the development
of our research tools and play an important role in a pupil’s approach to learning in mathematics, as
described in the following sections.

2.3.1 Self-efficacy

Self-efficacy is defined as “people’s beliefs about their capabilities to produce designated levels of perfor-
mance that exercise influence over events that affect their lives” (Bandura, 1994, p. 2). It influences how
we perceive (mathematics), how we think, how we are motivated and how we behave. It differs between
areas (e.g., languages vs mathematics, but also areas within mathematics) and changes through time.
A pupil’s ability to evaluate his/her performance has attracted much research attention. Pajares

and Graham (1999) showed that self-efficacy was a strong predictor of pupils’ performance. Yurt (2014)
revealed high- and medium-level significant relations between mathematics self-efficacy and mathematics
achievement among 7th graders. Schöber et al. (2018) found that mathematics self-efficacy has a positive
effects on later mathematics achievement and vice versa. Smetáčková (2018) demonstrated that self-
evaluation and self-efficacy are stronger predictors of actual performance than an external evaluation and
ascertained a slight tendency of Czech 8th grade pupils to overvalue their own achievement in mathematics.

2.3.2 Metacognition

While cognition is involved in doing (in solving mathematical tasks), metacognition “is involved in choos-
ing and planning what to do and monitoring what is being done” (Garofalo & Lester, 1985, p. 164).
Metacognitively aware pupils seem to be more effective learners and pupils’ “metacognitive awareness
is related to their task motivation and their subsequent use of strategies in preparing for classroom
assessment” (Hammann & Stevens, 1998, p. 4).
To study such a hidden feature of pupils’ thinking, research on metacognition uses questionnaires, in-

terviews, observations or their combinations (e.g., Zimmerman, 2018). Pupils’ predictions of their success
in solving mathematics problems are often compared with their actual results.

2.3.3 Parental influence

Positive parental attitudes towards mathematics affect pupils’ attitudes and willingness to study it (e.g.,
Bartley & Ingram, 2018; Eccles & Wigfield, 2002). Bartley and Ingram (2018) found a significant positive
correlation between parents’ mathematical self-efficacy and their children’s (age 12–13) interest in math-
ematics. Tocci and Engelhard (1991) found parental support to be a significant predictor of 13-year-old
pupils’ attitudes towards mathematics. Hong et al.’s (2010) study supported these findings but did not
confirm causality between parents’ attitudes and pupils’ achievements.

2.4 Research questions

In our study, we investigate pupils’ intentions of learning and processing subject matter. We do not deal
thoroughly with their beliefs about their capabilities (self-efficacy) or their capability of planning and
monitoring what is being done (metacognition), despite the undeniable influence. Therefore, we examine
the depth of their understanding and knowledge as explained above. To the best of our knowledge, no
study has focused on pupils’ perception of the depth of their knowledge in mathematics.
The research is of a mixed design. In the quantitative part, we ask if it is possible to distinguish types

of lower-secondary pupils who tend to deep or surface understanding, and/or if they have a strategic
approach to understanding (RQ1). We also explore the characteristics of these types of understanding in
terms of the pupils’ approach to and perception of mathematics (RQ2).
In the qualitative part, five pupils were selected to participate in interviews to identify if their approach

to understanding corresponds to the appropriate type. For these pupils, their diagnostic test results
indicated some level of surface knowledge but their questionnaire results showed different levels and
combinations of surface and deep knowledge and strategic approach to understanding.
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3 Methodology

We use John Creswell’s explanatory mixed methods design for a stronger methodological framework
(Ivankova et al., 2006). An explanatory sequential mixed methods design was used, which involved col-
lecting quantitative data first and illustrating the quantitative results with the help of in-depth qualitative
data. In the first, quantitative phase of the study, questionnaire and diagnostic test data were collected
from 318 lower-secondary pupils to test their notion of their own understanding mathematics and to
assess whether it relates to other variables. The complementary, qualitative phase was conducted to gain
more insight into the quantitative results; namely, to explore the perception of understanding of selected
participants based on their results in the quantitative phase.

3.1 Sample and research procedure

Four lower-secondary schools in Prague5 participated in the study in 2019/2020; one class in each grade 6
to 9 was selected. The percentage of children from abroad in these classes did not exceed the average for
the Czech Republic (about 2%). The classes were average in relation to pupils’ behaviour, school results
and learning disabilities.6

In two mathematics lessons, the author assigned a questionnaire on the pupils’ perception of under-
standing mathematics and a diagnostic test7 on fractions (Tab. 1).8

Tab. 1: Respondents for the first questionnaire

School A School B School C School D Total
6th grade 20 12 17 19 68
7th grade 19 19 24 14 76
8th grade 16 16 22 31 85
9th grade 19 19 25 26 89
Total 74 66 88 90 318

Based on the questionnaire responses and diagnostic test results (Novotná, 2020), 16 pupils who
demonstrated surface understanding were invited to participate in interviews. Five were chosen to illus-
trate the results in this article (Tab. 10). With three respondents from school A (Adéla, Barbora, Eliška),
two interviews took place in person before the schools were closed due to the covid pandemic. The last
interview and all three interviews with Ferda and Václav were performed online. Each interview took
around 45 minutes.
The questionnaire was assigned just before the pandemic closed schools in Spring 2020. We supposed

that online teaching, in which teachers were only virtually present, might influence pupils’ attitude towards
their understanding and thus prepared a “covid questionnaire” which included most of the items of the
original questionnaire. After pilot testing (N = 20), it was sent online to the pupils of all the classes
except School B, which declined further cooperation. Since the questionnaire was not assigned in person,
the number of questionnaires returned was lower (Tab. 2).

Tab. 2: Respondents for the “covid questionnaire”

School A School C School D Total
6th grade 8 14 8 30
7th grade 14 7 11 32
8th grade 4 13 12 29
9th grade 12 15 15 42
total 38 49 46 133

In this article, we focus on the cognitive and affective aspects of attitudes. The behaviour aspect was
targeted in another part of the study focused on tutoring.

5Convenient sampling, more thoroughly described in Novotná (2020).
6Based on the formal and informal evaluations of the teachers and/or headmasters.
7The test was composed of tasks from research on fractions as an area in which pupils often fail (e.g., Kieren, 1976; Behr

et al., 1983; Vondrová et al., 2015).
8Four pilot studies (see Novotná, 2020) were conducted to prepare the diagnostic tools (N = 234).
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3.2 The questionnaires

Part of the first questionnaire was inspired by Code et al. (2016), some statements were based on the
criteria for mechanical knowledge (Hejný & Kuřina, 2009) and other research from Section 2. Pilot studies
led to the specification of statements and addition of new ones. For example, as pupils did not distinguish
between understanding mathematics and being able to carry out an algorithm, the appropriate items
were added.
The part of the questionnaire which is the basis for this article consists of 24 statements divided into

four groups (Appendix A), evaluated on a Likert scale (1 – I absolutely agree, 2 – I rather agree, 3 –
I don’t know, 4 – I rather disagree, 5 – I absolutely disagree). It contains six statements related to surface
understanding (group A9, e.g., It is not my aim to understand how a math solving process emerged [e.g.,
adding fractions with different denominators]), six statements relating to deep understanding (group D,
e.g., When I’m learning something new in math, it’s good to look for connections to something I already
know [e.g., fractions and decimals]), and six statements about the strategic approach to understanding
(group S, e.g., For a test, I only learn individual steps in a sample solution method, if it is enough for
passing it). Six other statements (group O) are paired, asking first about the estimated difficulty in
mathematics tests (important for the strategic approach), second, about the parents’ views of a pupil’s
knowledge, and third, about the difference between “I can do” and “I understand” mathematics.
Given the importance of pupils’ motivation for and attitudes to mathematics, the questionnaire also

included items aimed at revealing pupils’ perception of the difficulty, popularity and importance of math-
ematics, evaluated again on a 5-point Likert scale.
To prevent the influence of the order of items, four versions of the questionnaire were created and

distributed evenly among the pupils in each class.10

The second, “covid-questionnaire” was based on the first questionnaire and included new items con-
nected to changes caused by remote learning with an original aim to discover if and how pupils’ perceptions
of their own understanding mathematics were changed by the remote learning. However, it transpired
that there were no statistical differences between pupils’ results in the first questionnaire and in the covid-
questionnaire as for their perception of their understanding mathematics (see Novotná, 2020). Thus, in
this article, we use the data from the second questionnaire to enrich the data from the first one.

3.3 Interviews

During the semi-structured interviews with the author, the pupils were asked about their school mathe-
matics lessons (when learning a new topic/practising/revising for a test), their ways of learning mathe-
matics, what they do when they do not understand something in mathematics, what it means for them
to understand mathematics, how they check it, etc. Their answers from the questionnaires were verified,
too (e.g., a pupil explained why they perceived mathematics as extremely important). The tasks from
the diagnostic test were discussed in order to verify whether their solutions were algorithmic (surface).
Some tutoring was organised to deepen pupils’ understanding (not the focus of this study). During the
last session, the pupils were asked to summarize their participation in the study with respect to perceived
changes.

3.4 Data analysis

The questionnaire data was transcribed, checked and analysed in MS Excel using methods of descriptive
statistics (arithmetic mean, variation, median, frequencies). The Statements were analysed using factor
analysis in SPSS (Statistical Package for the Social Sciences) to confirm the four theorised categories
and to provide more insights into the results.11 Based on the results of the factor analysis, three indices
of understanding were created, indicating which type of understanding a pupil is inclined to. Their
characteristics and development are described in Section 4.1.
As the answers of 117 respondents of the “covid questionnaire” could be linked to their responses

in the first questionnaire, their pre- and “pandemic” results were compared. There were no statistically
significant differences in terms of their perception of their understanding mathematics (Novotná, 2020),
and thus, in this article, we use the data from the two questionnaires to enlarge the sample (N = 324+133).

9The category is labelled group A standing for “algorithmic” to avoid disambiguity with the “strategic” statements.
Three of each group A and D statements are formulated generally and three are formulated in the context of fractions.
10The construction of the versions and permutation of the statements was based on set parameters described in (Novotná,
2020).
11Pupils’ evaluations of the 5-point Likert scale were coded 1–5 (1 being the strongest agreement). For the factor analysis,
the evaluations of three group S statements were rotated to be oriented to the surface pole. Group S statements including
the three rotated statements are referred to as group S’.

Scientia in educatione, 13(2), 2022, p. 36–50 40 https://doi.org/10.14712/18047106.2202

https://doi.org/10.14712/18047106.2202


Due to the bigger sample, this inaccuracy causes less distortion than if only the data from the original
questionnaire was analysed by the factor analysis.
The interviews were video recorded and the author took field notes. The recordings were watched re-

peatedly, and relevant passages transcribed (Cohen et al., 2007). The passages’ relevancy was determined
by the focus of our study, e.g., any mention of how pupils learn mathematics or consider the understand-
ing they possess were relevant. The pupils mostly commented on the perception of their knowledge during
the first and last interviews.
Based on our focus, six categories were developed in a deductive way (Mayring, 2015). The passages

identified were investigated further to determine units of analysis, consisting of one or several sentences
referring to one particular category. Each unit was included in one or two categories (Tab. 3); thus, the
categories are not mutually exclusive. The categorization was made by the author and her supervisor
checked its plausibility.

Tab. 3: Coding manual with examples

Category Example
Surface understanding Adéla (8th grade): I have forgotten to use the common denominator

here. . . (why?) We have been taught it like this.
Deep understanding Eliška (9th grade): I know where to start and what I am solving. That

when I have an equation, I don’t only put the numbers in it and that’s it.
Strategic approach to
understanding

Ferda (7th grade): It (regular standard tests) forces me to prepare myself
for the lesson, [. . . ] I know exactly what to learn.

Learning preferences Václav (6th grade): Because I have to think about it, and then I
understand it more properly if I think harder about it at the time when I
don’t understand it much.

Self-evaluation of understanding Adéla (8th grade): I am really dumb with this.
Attitudes towards learning
mathematics and towards types
of tasks

Eliška (9th grade): I think it would be more interesting, if it was
something else than a pizza, something less typical.

4 Results

The sample consists of 451 respondents, 245 girls and 206 boys (Tab. 4). The proportion between girls
and boys was rather balanced in all the classes.

Tab. 4: Number of respondents

School A School B School C School D Total
6th grade 28 12 31 27 98
7th grade 33 19 31 25 108
8th grade 20 16 35 43 114
9th grade 31 19 40 41 131
Total 112 66 137 136 451

4.1 Pupils tending to deep/surface understanding or to a strategic approach to
understanding (RQ1 and RQ2)

The reliability of the statements was measured with Cronbach’s alpha12 (Appendix B, with KMO indices).
The Statements were tested by the factor analysis to reveal latent variables and reduce their number.
The Statements were tested in groups (A, D, S, O) and together. No minimum number of factors was set
for testing the evaluations of group A and D statements. Four identified factors were labelled according
to the prevailing character of the statements in them (Tab. 5). The KMO index is 0.709. The factors
explain 52.3% of the total variance, which can be considered a standard result (e.g., Chvál, 2013). The
factor “Quality of A and D understanding” explained only 20.7% of the total variance. The other three
factors impact on the data as latent variables which can also influence pupils’ understanding. However,
they describe pupils’ diverse characteristics, whose analysis is beyond this article.
12The lower values below the threshold of 0.7 could be caused by the complex nature of the Statements. But still, the
levels of KMO indices are satisfactory, thus, we accompanied the analysis with the analysis of the Group O statements and
other items of the questionnaires.

Scientia in educatione, 13(2), 2022, p. 36–50 41 https://doi.org/10.14712/18047106.2202

https://doi.org/10.14712/18047106.2202


Tab. 5: Measure of representation of group A and D statements in the factors

Statement
Factor 1
“Quality of A
and D understanding”

Factor 2
“Volition
to remember”

Factor 3
“Capability
to try to
solve independently”

Factor 4
“Perfectionism”

a1 0.593 0.202 0.394 0.397
a2 0.252 0.568 −0.402 −0.108
a3 0.629 0.169 0.030 0.277
a4 0.222 0.562 −0.503 0.059
a5 0.594 0.319 0.371 −0.340
a6 0.536 0.280 −0.046 0.202
d7 −0.410 0.470 0.249 −0.052
d8 −0.563 0.278 −0.109 −0.124
d9 −0.440 0.362 0.138 −0.135
d10 −0.386 0.426 0.162 −0.110
d11 −0.395 0.374 0.084 0.060
d12 −0.074 0.163 0.516 −0.751

Total
variance
explained

20.7% 13.9% 9.2% 8.5%

Group S’ statements were tested by the factor analysis analogously to the above. Two factors were
detected, which explained 52.5% of the total variance (Tab. 6). The KMO index is 0.697.

Tab. 6: Measure of representation of group S’ statements in the detected factors

Statement
Factor 1
“Quality of
S understanding”

Factor 2

s13′ 0.664 0.341
s14 0.632 −0.212
s15′ 0.250 0.868
s16′ 0.599 −0.056
s17 0.741 −0.016
s18 0.623 −0.423
Total variance explained 33.8% 18.7%

Three indices were constructed based on the values in Tab. 5 and 6 (index of surface understanding
(ia), index of deep understanding (id), and index of strategic understanding (is), calculated as weighted av-
erages13 where the evaluation of each statement is represented to the extent to which it participates in the
factor “Quality of understanding”. For example, ia = a1·0.593+a2·0.252+a3·0.629+a4·0.222+a5·0.594+a6·0.536

6 .
The lower the value of ia (and is), the more the respondent agrees with group A statements (and group S
statements), and vice versa. For the absolute value of index |id|, the same rules apply; the nearer the
value to zero, the more the pupil is inclined to the given type of understanding. Descriptive character-
istics of the indices are in Appendix C. The correlation between the indices ia and is is of a medium
strength (r = 0.45), such as between id and is (r = 0.47), and the correlation between ia and id is weaker
(r = 0.28).
Figure 1 and the table in Appendix C show that ia and is are distributed rather symmetrically. The

values of id are approaching zero; there is also a smaller variability in data below the first quartile (Q1).
In all the indices, the arithmetic mean is similar to the median. The outlier in the boxplot of ia belongs to
three respondents (R83, R255, R1176) who rather disagree or absolutely disagree with group A statements
(values in Q4). Respondent R255 absolutely disagrees with all other statements as well (values in Q4).
Respondents R83 and R1176 rather agree with group D statements (values near the Q1 boundary) and
absolutely disagree with group S statements (values in Q4). The outliers in the boxplot of id belong to
respondents R259 (nearer to zero) and R1013. R259 absolutely disagrees with group S statements (ia
13Initially, the indices were constructed as arithmetic means, as is typical in other studies (e.g., Hrabal & Pavelková,
2010). Considering the other latent variables and the diverse loadings (some of them quite low) to which the individual
statements are shared in the “Quality of understanding” factor, a more precise approach was sought. We generated a value
of the factor for each respondent, which meant that those items which do not constitute the factor also influence this value.
The values for the pupils participating in the interviews strongly correlated with the values of the indices based on the
weighted average and thus, this approach was used for the whole sample.
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around median, is in Q4). R1013 tends to strongly agree with group A and S statements (values in Q1).
The outlier in the R42’s boxplot of is shows that he absolutely agrees with all the Statements (values in
Q1). These pupils absolutely agree or disagree with at least one other group of Statements.
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Fig. 1: Boxplots of indices ia (left), id (middle), is (right)

The dependency of indices ia and id is in Figure 2; the dashed line, id = 0.21 ·ia−1.03, is the trendline.
The T value was counted as T = 0.21 ·ia−id−1.03 with the standard deviation 0.23. The outliers, farther
from the trendline than the distance of one standard deviation (see two lines parallel to the trendline,
N = 144), were also analysed with respect to other variables. The results of stronger correlations are in
Tab. 7.
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Fig. 2: Dependency of ia and id

Tab. 7: Correlations of T value and other variables

All T Outlaying T

Variable r r

Index is −0.37 −0.37
Statement o19 0.22 0.32
Statement o20 0.26 0.35
Statement o22 0.25 0.43
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The pupils’ evaluations of group O statements were analysed separately and by the paired t-test for
o19+o20, o21+o22 and o23+o24 to see whether each pair was evaluated similarly. The respondents agreed
more with every second statement of the pair. While a t-test showed a significant difference between the
statements in each pair, an F-test only confirmed it for o21 + o22. A small effect size was found for the
last two pairs (Tab. 8).

Tab. 8: Results of t-test, F-test and Cohen’s d of group O statements

o19 o20 o21 o22 o23 o24
Arithmetic mean 2.57 2.47 1.88 1.66 2.89 2.43
t-test p = 0.009 6** p < 0.000*** p < 0.000***
F-test p = 0.908 p < 0.000*** p = 0.720
Cohen’s d 0.08 0.23 0.40
** p < 0.01, *** p < 0.001

We also analysed how pupils perceived mathematics in respect to its difficulty, popularity and im-
portance, and what their mark in mathematics was at the end of the previous academic year. A weaker
significant correlation was found between index ia and other variables; however, a negative correlation
was found between index id and other variables (Tab. 9).

Tab. 9: Correlation coefficients between ia and id and other variables

Correlation r

ia

Difficulty 0.181 8
Popularity −0.314 0*
Importance −0.192 0
Mark −0.198 0

id

Difficulty 0.126 6
Popularity −0.246 0*
Importance −0.241 0*
Mark −0.219 0*

* weak

The respondents were divided into groups according to their location in one of four quartiles of index ia,
|id| and is. Almost every combination out of 64 was represented by some respondents (Appendix D). The
lower the quartile, the higher agreement with the statements. The least frequent combinations (N ≤ 20)
comprise pupils with a high agreement to group A and D. The most frequent (N ≥ 35) are combinations
with a strong agreement to group A and a strong disagreement with group D, or vice versa. Groups with
no stronger preferences towards any of ia and id (between Q2 and Q3 in both) are well-represented (N
from 31 to 34); in some of them, is is also located in a lower quartile.
No significant differences were found with regard to school grade, gender or type of school in our

analysis; therefore, this data is not described in this article.14

4.2 Qualitative findings (illustration)

As mentioned above, the interviews were conducted to provide more insight into the quantitative findings.
Since the sample is not representative (N = 5)15, we only use the knowledge from the interviews to
illustrate the quantitative findings and to show the way of possible future research.
The pupils participating in the interviews were the ones for whom some surface understanding was

determined in the diagnostic test. First, the results gained in the interviews were compared with the
quantitative results (Tab. 10).
In the interviews, the respondents rarely commented on the depth of their knowledge on their own

and if they did, they mostly expressed confusion about why they failed. For example, Barbora who tends
towards deep understanding but often resorts to a surface approach said: I often think I understand it,
but then I do not get the correct solution [. . . ] I don’t know why. Or Adéla who strongly tended towards
surface understanding during the interviews mentioned: At the beginning, you must only find the formulas
in the textbook [. . . ] and then memorize it and practise.

14However, the data set for each class is rather small and, thus, it would be quite surprising if any statistical significance
was found in this aspect.
15Our aim was to interview more pupils, however, it was not possible due to the pandemic situation.
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Tab. 10: Characteristics of pupils: grade, indices, quartiles and test result (out of 27 points)

Pseudonym Grade ia Quartile id Quartile is Quartile Test result
Adéla 8 1.06 Q1 −0.78 Q3 1.75 Q2 21p
Barbora 7 1.39 Q2 −0.72 Q3 1.35 Q1 14p
Eliška 9 1.65 Q4 −0.46 Q1 1.72 Q2 20p
Ferda 7 0.80 Q1 −0.66 Q2 1.45 Q1 22p
Václav 6 1.65 Q4 −0.47 Q1 1.32 Q1 26p

Most pupils did not seem to be aware of the surface knowledge they possessed (e.g., Barbora: I of-
ten think I understand it, but the solution is not correct). An exception is Václav, highly performance
motivated, who mentioned hating the feeling when he did not understand something well (deeply): I am
quite nervous that I don’t know how to do it, and then I try to solve it in vain, even though I don’t know
how. It isn’t the best feeling. His statement is in line with the values of indices (id and is in Q1, ia in
Q4). Václav is the only respondent who indicated that he wanted to get rid of his surface knowledge, e.g.,
stating: I am quite nervous, when I don’t know how to do [solve] it, and then I try to do it, even though
I have no idea what I am doing. This is not the best feeling and I am trying to avoid this.
While for Adéla16, Barbora, Eliška and Václav, ia, id and is agree with the findings from the qualitative

part, for Ferda, some puzzling results were found. Ferda is most likely not aware of his surface knowledge.
It was clear during the interviews that he tended towards it (moreover, ia is the lowest, see Tab. 10) and
no effort towards deep knowledge was visible. Among others, Ferda claimed: I guess there is nothing (in
mathematics) I completely don’t know. He also stressed that when tested at school, he mostly solved all
the tasks correctly (but, in his words, they were given easy and standard tasks to which they had been
taught a model solution). However, the value of his id is in Q2. The is (Q1) could be explained by his
external motivation, the id (around median) might be influenced by the other latent variables, above
all “Volition to remember”. Ferda also mentioned noticing a change in his attitude during the remote
learning: I am not so good in learning. [. . . ] I did not understand the subject matter so fast, I wasn’t
motivated, normally I study for tests, so I wasn’t revising. . .

5 Discussion
In the study, we highlighted the cognitive and affective components of attitudes and uncovered three in-
dices accounting for pupils’ attitudes to their understanding mathematics. We found that in our sample,
the groups of pupils with strong tendencies towards surface understanding and away from deep under-
standing or vice versa were most common but not prevalently so. This is in accordance with Entwistle
and Entwistle’s (1992) findings that mixed types of understanding often coexist in a student. Additional
latent variables were shown to intervene, grouped in the factors “Volition to remember”, “Capability to
try to solve independently” and “Perfectionism”. A strategic approach to understanding also influences
the perception. Entwistle and Entwistle (1992, p. 27) even state: “To be really successful, it seemed essen-
tial that students were strategic” and they also mention the significant role of context. Therefore, their
findings support the view that understanding is a multidimensional concept and has to be linked to many
other contextual variables (as shown in the qualitative part of this study). Weaker or medium-strong
correlations were found between the indices and evaluations of self-reported popularity and importance
of mathematics and a school grade.
Regarding the pupils with outlier indices of surface and deep understanding, a medium-strong cor-

relation was found between these values and the statements related to a pupil’s perception of his/her
understanding (o19, o20) and those related to parents (o22); therefore, the parents’ attitudes could influ-
ence the pupils’ perception. Similar results have been obtained by others (see Section 2.3.3). Oluwatelure
and Oloruntegbe (2008) investigated the effects of parental involvement on students’ attitudes in biology
and chemistry and hypothesise that “a greater academic progress can be achieved by students” if their
parents have a good influence on them (ibid., p. 8).
Between the pairs of group O statements, the only statistical difference was found between o21 (it is

important for my parents that I have good school grades in mathematics) and o22 (it is important for
my parents that I understand mathematics well). Pupils might feel some difference between the grades
received and their understanding of mathematics; however, our results also show that they do not feel
a significant difference between understanding mathematics (o20) and being able to do it well (o19). As
discussed in Section 2.3.2, when not advisedly led to noticing the difference, many pupils are not able to
spot it and, thus, this result is not surprising.

16Adéla’s test result was not so hight due to her imprecise drawings and numerical errors.
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In contrast to our expectation, there were no differences in the evaluations of the Statements between
pupils with different attitudes to mathematics who perceived its difficulty and importance differently. The
popularity of mathematics weakly correlates with ia and id, whereas the importance and also the school
grade only correlate weakly with id. Thus, we may assume that pupils tending to deep understanding
perceive mathematics as more difficult, but they often have better school marks and like mathematics
more than pupils tending to surface understanding. More difficult subjects tend to be liked less by
pupils, but Hrabal and Pavelková (2010) found that 40% of Czech lower-secondary pupils who liked
mathematics perceived it as easy (or very easy) but 25% of them perceived it as (very) difficult. This
discrepancy, noticed by the authors but not explained, may be caused by different approaches of pupils
towards understanding mathematics.
The interview data showed that either the three index levels, or the test results alone do not present

a sufficient indicator to describe a pupil’s understanding in all cases. It is better to accompany them by the
interpretation of other statements from the questionnaire and discussing them with a pupil. Interviews,
therefore, seem to be an important part of investigating pupils’ perception of their understanding. We
can very tentatively conclude that the three sources of information together provided us with a fitting
image of a pupil’s understanding, so follow-up interviews may be a promising line of future research.
The interviews revealed that pupils scarcely showed signs of contemplating the depth of their un-

derstanding. Entwistle and Entwistle (1992) even found that for more mature students (final year at
a university) it is extremely difficult to provide an appropriate account of their understanding. In spite of
our efforts, most pupils did not show any indication of being aware of their surface understanding, and/or
being disquieted by the depth of their understanding mathematics. We may only speculate why. The most
apparent reason seems to be that they are not used to distinguishing different levels of understanding
and approaching mathematics at different levels at school, and it is therefore difficult for them to do
so. Similarly, Usiskin (2015) pointed out that pupils were often not aware of the multidimensionality of
understanding a concept if they were not led by a teacher. Some pupils may not have well-developed
metacognition and/or metalanguage to think about and describe their state. This may be a problem,
as some argue that “metacognition seems to be one of the most important predictors of mathematical
performance” (Desoete & De Craene, 2019, p. 565). Some pupils may also be satisfied with their level of
understanding, or may have abandoned the thought they could ever understand mathematics in a deeper
way, and accordingly do not want to make an effort. Pajares and Usher (2008) express the same idea
and support it by a case study, showing that a teacher’s approach can change such pupils’ mathematics
self-efficacy and make them rethink their attitudes.

6 Limitations, implications and conclusions

The results of our research must be seen in the light of several limitations. The first is the size of the
sample. The original plan, which could not be implemented due to the coronavirus restrictions, would
have provided us with a bigger sample and enabled us to generalise. The factor analysis would also have
stronger validity.
When considering our results, the question arises of whether approaching pupils’ understanding in

terms of surface/deep understanding and strategic approach to it is expedient. In concordance with
Kieran (2013), it was confirmed that a dichotomous view of surface and deep understanding is not
sufficient. Despite conducting and evaluating multiple pilot studies, the factor analysis revealed other
latent variables that influence the pupils’ perception of the quality of their understanding. These factors
should be further investigated, separately from those variables we have included. Moreover, factors such
as pupils’ social environment were investigated only marginally in our study and thus our findings must
be taken cautiously. The values of the indices for individual pupils should be validated by results from
interviews and mainly by the interpretation of group O statements and other items from the questionnaire
about school mathematics (described in Novotná, 2020).
When analysing the data, a problem with a subjective perspective in evaluating Likert-scales by

individual respondents might arise. This distortion could be avoided, e.g., by using the anchoring vignette
technique (Voňková & Hullegie, 2011). Unfortunately, the vignettes were not included in the questionnaire
due to its length, which could have discouraged young respondents.
The results would be more robust if we could compare the indices obtained with the teaching style

of the mathematics teacher and especially with his/her attitudes towards the quality of understanding
(theirs and also the pupils’). This topic is available for further research.
We are aware of some limitations of the calculation of indices, namely that the extent to which

individual statements influence the value of the factor may differ depending on the sample, rotation in
the factor analysis, etc.
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We believe that we brought insight into the under-researched area of pupils’ perception of the depth of
their understanding mathematics and that the strength of our study lies in the development of a mixed
research methodology. The indices ia, id and is together with the referential standards (Appendix C)
enable us to analyse pupils’ attitudes towards their understanding. It transpired that the depth of pupils’
own understanding is influenced by other latent factors, too.
We showed that it is convenient to supplement the quantitative results by an interview. As inferred

from the questionnaires and test results data and illustrated with our qualitative analysis, pupils may
often not be aware of the depth of their understanding and they mix surface and deep understanding.
This has implications for teachers.
Finally, our study is particular to the Czech context and includes a limited number of participants.

It remains to be seen whether the results are valid more broadly.
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7 Appendices

Appendix A: The perception of one’s own quality of understanding statements
(translated from Czech)

Surface

• a1. It is not my aim to understand how a math solving process emerged (e.g., adding fractions with
different denominators).

• a2. When I am able to repeat everything (e.g., about multiplying fractions) after the teacher, it
means I understand it well.

• a3.When solving math tasks, it is sufficient for me to remember the steps of the process (e.g., how
to proceed when subtracting two fractions). I don’t care why it works.

• a4. I understand math when I can solve a task using a solving process I know from school.

• a5. It is not my aim to understand how math formulas were created.

• a6. I must remember math formulas and solving processes. When I don’t remember some, I can’t
do anything to figure it out.

Deep

• d7. When I’m learning something new in math, it’s good to look for connections to something
I already know (e.g., fractions and decimals).

• d8. My aim is not only to solve a task, but also to understand why I solved it like that (e.g., why
I have to multiply two fractions).

• d9. I’d like to know fractions so well that I would be able to explain everything about them to
someone else.

• d10. When I don’t understand a math assignment, I don’t give up and try to get it.

• d11. I feel free to ask my math teacher about something to understand the subject matter better.

• d12. It is normal to make a mistake when solving a math task during a lesson.

Strategic

• s13. Even though it would be enough for a test to learn a solving process by heart, I still try to
think about it and understand it properly.

• s14. For a test I only learn individual steps in a sample solution method, if it is enough for passing
it.

• s15. I try to understand a solving process well, so that I could modify it, if needed.
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• s16. I prepare at home for a math lesson as carefully as the teacher requires.

• s17. I learn only those things which are necessary to pass a test.

• s18. I keep thinking during a math lesson only if it is needed.

Other

• o19. I think I can do math well.

• o20. I think I understand math well.

• o21. It is important for my parents that I have good school grades in mathematics.

• o22. It is important for my parents that I understand mathematics well.

• o23. Our teacher doesn’t give us non-standard tasks in a test.

• o24. In a test we often get tasks where it is not enough to remember a solving process by heart.

Appendix B: Reliability (Cronbach’s alpha) and KMO indices of the Statements

Cronbach’s alpha KMO
Group A statements 0.63 0.68
Group D statements 0.54 0.71
Group S’ statements 0.64 0.73

Appendix C: Descriptive characteristics of indices ia, id and is

ia |id| is
Arithmetic mean 1.43 0.72 1.95
Possible minimum 0.47 0.38 0.59
Achieved minimum 0.55 0.38 0.59
Q1 boundary 1.18 0.52 1.63
Median 1.42 0.68 1.94
Q3 boundary 1.64 0.85 2.31
Achieved maximum 2.36 1.50 2.92
Possible maximum 2.36 1.92 2.92

Appendix D: Distribution of the respondents in quartiles for the indices ia, id and is

ia id is

Q1

Q4

Q1 25

44
Q2 15
Q3 3
Q4 1

Q3

Q1 13

29
Q2 9
Q3 6
Q4 1

Q2

Q1 8

28
Q2 7
Q3 9
Q4 4

Q1

Q1 4
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