Abstrakt
Školské experimentovanie s podporou výpočtovej techniky je v relevantnej literatúre už niekoľko desiatok rokov prezentované ako jeden zo sľubných prístupov v štúdiu prírodných vied. Technológie však podliehajú veľmi častým a rýchlym zmenám, a preto aj v oblasti počítačovej podpory laboratórnej činnosti žiakov možno za posledné obdobie sledovať rôzne technologické riešenia. V tomto príspevku sa zaoberáme komparáciou žiackeho vnímania experimentovania s dvomi rozdielnymi koncovými zariadeniami: (i) notebookmi a (ii) tabletmi, ako súčastí rovnakého typu meracieho systému. Pre účely štúdie sme vytvorili sadu štyroch počítačom podporovaných aktivít z chémie, ktoré boli realizované dvomi skupinami žiakov slovenských gymnázií. Kým prvá skupina pracovala s meracími systémami, kde boli ako koncové zariadenia použité notebooky, druhá skupina pracovala na rovnakých aktivitách s tabletmi. Cieľom štúdie je zistiť, či rozdielne technologické prístupy majú potenciál generovať štatisticky významné rozdiely vo vnímaní tohto typu experimentovania samotnými žiakmi.
Reference
Ambrose, B. S. (2004). Investigating student understanding in intermediate mechanics: Identifying the need for a tutorial approach to instruction. American Journal of Physics, 72(4), 453–459. https://doi.org/10.1119/1.1648684
Aksela, M.K. (2005). Supporting meaningful chemistry learning and higher-order thinking through computer-assisted inquiry: A design research approach [Dizertačná práca]. University of Helsinki.
Aksela, M.K. (2011). Engaging students for meaningful chemistry learning through microcomputer-based laboratory (MBL) inquiry. Educació Química EduQ, 9, 30–37. https://doi.org/10.2436/20.2003.02.66
ASELL – Advancing science by enhancing learning in the laboratory website. (2014). http://www.physics.usyd.edu.au/asell/asell.site/
Atar, H.Y. (2002). Chemistry students’ challenges in using MBL’s in science laboratories. In P.A. Rubba, J.A. Rye, W. J. DiBiase, & B.A. Crawford (Eds.), Proceedings of the 2002 Annual International Conference of the Association for the Education of Teachers in Science (pp. 2–23). Charlotte, Association for the Education of Teachers in Science.
Banchi, H., & Bell, R. (2008). The many levels of inquiry. Science and Children, 46(2), 26–29.
Barton, R. (1997). How do computers affect graphical interpretation? School Science Review, 79(287), 55–60.
Beichner, R. J. (1990). The effect of simultaneous motion presentation and graph generation in a kinematics lab. Journal of Research in Science Teaching, 27(8), 803–815. https://doi.org/10.1002/tea.3660270809
Bernhard, J. (2003). Physics learning and microcomputer based laboratory (MBL) learning – effects of using MBL as a technological and as a cognitive tool. In D. Psillos, P. Kariotoglou, V. Tselfes, E. Hatzikraniotis, G. Fassoulopoulos, & M. Kallery (Eds.), Science Education Research in the Knowledge-Based Society (pp. 323–331). Springer Netherlands. https://doi.org/10.1007/978-94-017-0165-5
Bílek, M., Kričfaluši, D., Budweiserová, K., & Danielová, M. (2002). Digitální váhy a počítač ve výuce chemie. In M. Bílek (Ed.), Profil učitele chemie II.: Sborník příspěvků z jednání v sekcích XI. mezinárodní konference o výuce chemie (s. 206–209). Gaudeamus.
Borghi, L., De Ambrosis, A., Lunati, E., & Mascheretti, P. (2001). In-service teacher education: An attempt to link reflection on physics subjects with teaching practice. Physics Education, 36(4), 299–305. https://doi.org/10.1088/0031-9120/36/4/303
Brasell, H. (1987a). Effectiveness of a microcomputer-based laboratory in learning distance and velocity graphs [Dizertačná práca]. University of Florida.
Brasell, H. (1987b). The effect of real-time laboratory graphing on learning graphic representations of distance and velocity. Journal of Research in Science Teaching, 24(4), 385–395. https://doi.org/10.1002/tea.3660240409
Buntine, M.A., Read, J.R., Barrie, S. C., Bucat, R.B., Crisp, G.T., George, A.V., Jamie, I.M., & Kable, S.H. (2007). Advancing chemistry by enhancing learning in the laboratory (ACELL): A model for providing professional and personal development and facilitating improved student laboratory learning outcomes. Chemistry Education Research and Practice, 8(2), 232–254. https://doi.org/10.1039/B6RP90033J
Chen, G., Chang, C., & Wang, C. (2008). Ubiquitous learning website: Scaffold learners by mobile devices with information-aware techniques. Computers & Education, 50(1), 77–90. https://doi.org/10.1016/j.compedu.2006.03.004
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. 2nd ed. Academic Press.
Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159. https://doi.org/10.1037/0033-2909.112.1.155
Čtrnáctová, H., Čížková, V., Hlavová, L., & Řezníčková, D. (2012). Dovednosti žáků v badatelsky orientované výuce chemie. In J. Reguli (Ed.), Zborník z medzinárodnej konferencie „Aktuálne trendy vo vyučovaní prírodných vied (Smolenice 2012) (s. 31–36). Pedagogická fakulta Trnavskej univerzity.
Euler, M., & Müller, A. (1999). Physics learning and the computer: A review, with a taste of meta-analysis. In M. Komorek, H. Behrendt, H. Dahncke, R. Duit, W. Gräber, & A. Kross (Eds.), Second International Conference of the European Science Education Research Association (pp. 1–3). Kiel, European Science Education Research Association.
Field, A. (2013). Discovering statistics using IBM SPSS Statistics. 4th edition. SAGE Publications.
Fu, Q., & Hwang, Q. (2018). Trends in mobile technology-supported collaborative learning: A systematic review of journal publications from 2007 to 2016. Computers & Education, 119, 129–143. https://doi.org/10.1016/j.compedu.2018.01.004
Gašparík, V. (2014) Školské počítačové meracie systémy vo vyučovaní chémie na základnej škole. Biológia, ekológia, chémia, 18(4), 48–53.
George, A.V., Read, J.R., Barrie, S. C., Bucat, R.B., Buntine, M.A., Crisp, G.T., Jamie, I. M., & Kable, S.H. (2009). What makes a good laboratory learning exercise? Student feedback from the ACELL project. In M. Gupta-Bhowon, S. Jhaumeer-Laulloo, H. Li Kam Wah, & P. Ramasami (Eds.), Chemistry Education in the ICT Age (pp. 363–376). Springer. https://doi.org/10.1007/978-1-4020-9732-4 34
Gilbert, J.K., & Treagust, D. (2009). Multiple representations in chemical education. Springer.
Haksiz, M. (2014). Investigation of tablet computer use in special education teachers’ courses. Procedia – Social and Behavioral Sciences, 141, 1392–1399. https://doi.org/10.1016/j.sbspro.2014.05.240
Hedlington, L., White, H., & Curtis, S. (2019). “I cannot live without my [tablet]”: Children’s experiences of using tablet technology within the home. Computers in Human Behavior, 94, 19–24. https://doi.org/10.1016/j.chb.2018.12.043
Held, Ľ., Žoldošová, K., Orolínová, M., Juricová, I., & Kotuľáková, K. (2011). Výskumne ladená koncepcia prírodovedného vzdelávania (IBSE v slovenskom kontexte). Typi Universitatis Tyrnaviensis.
Hofstein, A. (2004). The laboratory in chemistry education: Thirty years of experience with developments, implementation and research. Chemistry Education Research and Practice, 5(3), 247–264. https://doi.org/10.1039/B4RP90027H
Horváthová, E. (2018). Počítačom podporované experimenty s dotykovými koncovými zariadeniami [Diplomová práca]. FPV UMB.
Ješková, Z. (2004) Počítačom podporované experimenty z termiky a termodynamiky v prostredí IP COACH. Univerzita Pavla Jozefa Šafárika.
Johnstone, A.H. (2010). You can’t get there from here! Journal of Chemical Education, 87(1), 22–29. https://doi.org/10.1021/ed800026d
Kovalchick, A., & Dawson, K. (2004). Education & technology. An encyclopedia. ABC Clio.
Lavonen, J., Aksela, M., Juuti, K., & Meisalo, V. (2003). Designing user-friendly datalogging for chemical education through factor analysis of teacher evaluations. International Journal of Science Education, 25(12), 1471–1487. https://doi.org/10.1080/0950069032000072755
Linn, M. C., & Eylon, B. (2011). Science learning and instruction. Taking advantage of technology to promote knowledge integration. Routledge.
Linn, M. C., & Hsi, S. (2000). Computers, teachers, peers: Science learning partners. Routledge.
Linn, M. C., Layman, J.W., & Nachmias, R. (1987). Cognitive consequences of microcomputer-based laboratories: Graphing skills development. Contemporary Educational Psychology, 12(3), 244–253. https://doi.org/10.1016/S0361-476X(87)80029-2
Linn, M. C., & Songer, N.B. (1991). Teaching thermodynamics to middle school students: What are appropriate cognitive demands? Journal of Research in Science Teaching, 28(10), 885–918. https://doi.org/10.1002/tea.3660281003
Liu, Ch., Wu, Ch., Wong, W., Lien, Y., & Chao, T. (2017). Scientific modeling with mobile devices in high school physics labs. Computers & Education, 105, 44–56. https://doi.org/10.1016/j.compedu.2016.11.004
Mamlok-Naaman, R., Eilks, I., Bodner, G., & Hofstein, A. (2018). Professional development of chemistry teacher. Theory and practice. The Royal Society of Chemistry.
Mang, C., Brown, N., & Piper, L. (2017). “Old school” meets “new school”: Using books and tablets to improve information literacy and promote integrative learning among business students. The International Journal of Management Education, 15, 449–455. https://doi.org/10.1016/j.ijme.2017.07.003
Mann, H. B., & Whitney, D.R. (1947). On a test of whether one of two random variables is stochastically larger than the other. The Annals of Mathematical Statistics, 18(1), 50–60.
Marcum-Dietrich, N. I., & Ford, D. J. (2002). The Place for the computer is in the laboratory: An investigation of the effect of computer probeware on student learning. Journal of Computers in Mathematics and Science Teaching, 21(4), 361–379.
Metcalf, S. J., & Tinker, R. F. (2004). Probeware and handhelds in elementary and middle school science. Journal of Science Education and Technology, 13(1), 43–49. https://doi.org/10.1023/B:JOST.0000019637.22473.02
Mokros, J.R., & Tinker, R. F. (1987). The impact of microcomputer-based labs on children’s ability to interpret graphs. Journal of Research in Science Teaching, 24(4), 369–383. https://doi.org/10.1002/tea.3660240408
Montrieux, H., Vanderlinde, R., Courtois, C., Schellens, T., & Marez, L. (2014). A qualitative study about the implementation of tablet computers in secondary education: The teachers’ role in this process. Procedia – Social and Behavioral Sciences, 112, 481–488. https://doi.org/10.1016/j.sbspro.2014.01.1192
Nachmias, R., & Linn, M. (1987). Evaluations of science laboratory data: The role of computer-presented information. Journal of Research in Science Teaching, 24(5), 491–506. https://doi.org/10.1002/tea.3660240509
Oliemat, E., Ihmeideh, F., & Alkhawaldeh, M. (2018). The use of touch-screen tablets in early childhood: Children’s knowledge, skills, and attitudes towards tablet technology. Children and Youth Services Review, 88, 591–597. https://doi.org/10.1016/j.childyouth.2018.03.028
Pierri, E., Karatrantou, A., & Panagiotakopoulos, C. (2008). Exploring the phenomenon of change of phase of pure substances using the microcomputer-based-laboratory (MBL) system. Chemistry Education Research and Practice, 9(3), 234–239. https://doi.org/10.1039/B812412B
Priest, S. J., Pyke, S.M., & Williamson, N.M. (2014). Student perceptions of chemistry experiments with different technological interfaces: A comparative study. Journal of Chemical Education, 91(11), 1787–1795. https://doi.org/10.1021/ed400835h
Rane, L. (2013). The effectiveness of MBL experiments in developing conceptual understanding in kinematics among undergraduate physics students. In T. Bastiaens, & G. Marks (Eds.), World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education (Las Vegas) (pp. 2495–2502). San Diego, USA, Association for the Advancement of Computing in Education (AACE).
Redish, E. F., Saul, J.M., & Steinberg, R.N. (1997). On the effectiveness of active-engagement microcomputer-based laboratories. American Journal of Physics, 65(1), 45–54. https://doi.org/10.1119/1.18498
Reychav, I., & Wu, D. (2015). Mobile collaborative learning: The role of individual learning in groups through text and video content delivery in tablets. Computers in Human Behavior, 50, 520–534. https://doi.org/10.1016/j.chb.2015.04.019
Rideout, V. (2013). Zero to eight. Children’s media use in America. Report of Common sense media’s program for the study of children and media. Common Sence Media. https://www.commonsensemedia.org/file/zerotoeightfinal2011pdf-0/download
Rogers, L.T. (1995). Computer as an aid for exploring graphs. School Science Review, 76(276), 31–39. Rosenthal, R. (1991). Meta-analytic procedures for social research. 2nd ed. CA.
Russell, D.W., Lucas, K.B., & McRobbie, C. J. (2003). The role of the microcomputer-based laboratory display in supporting the construction of new understandings in kinematics. Research in Science Education, 33(2), 217–243. https://doi.org/10.1002/tea.10129
Ryan, R.M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54–67. https://doi.org/10.1006/ceps.1999.1020
Sassi, E., Monroy, G., & Testa, I. (2005). Teacher training about real-time approaches: Research-based guidelines and training materials. Science Education, 89(1), 28–37. https://doi.org/10.1002/sce.20041
Schauer, F., Lustig, F., Dvořák, J., & Ožvoldová, M. (2008). An easy-to-build remote laboratory with data transfer using the Internet School Experimental System. European Journal of Physics, 29(4), 753–766. https://doi.org/10.1088/0143-0807/29/4/010
Shuler, C., Winters, N., & West, M. (2013). The future of mobile learning: Implications for policy makers and planners. UNESCO working paper series on mobile learning. UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000219637
Simsek, M., & Dogru, I.A. (2014). Tablet Pc based clasroom. Procedia – Social and Behavioral Sciences, 116, 4246–4249. https://doi.org/10.1016/j.sbspro.2014.01.925
Skoršepa, M. (2012). Ako „uhasiť pálenie záhy – príklad školského chemického experimentu s podporou výpočtovej techniky. Biológia, ekológia, chémia, 16(3–4), 8–11.
Skoršepa, M. (2014). Stomach acid and antacids. Project No. 517587-LLP-1-2011-1-ES-COMENIUS-CMP. [online] http://comblab.uab.cat/
Skoršepa, M. (2015). Počítačom podporované experimenty v prírodovednom vzdelávaní. Belianum (Vydavateľstvo UMB).
Skoršepa, M., & Melicherčík, M. (2001). Zaujímavé kontinuálne merania z chémie uskutočňované SM Systémom. In Proceedings of II. Conference for Ph.D. students (pp. 254–258). Nitra, FPV UKF.
Skoršepa, M., Stratilová Urválková, E., Šmejkal, P., Tortosa Moreno, M., & Urban-Woldron, H. (2014). Activities with sensors in laboratory of biology: Students’ motivation and understanding the results. In M. Nodzy´nska„ P. Cie´sla, & A. Kania (Eds.), Experiments in teaching and learning natural sciences (pp. 25–33). Pedagogical University of Krakow.
Skoršepa, M., & Šmejkal, P. (2018). Comprehending Computer Based Laboratory Activities by Slovak and Czech Students. In P. Ciesla, & A. Michniewska (Eds.), Science Teaching in the XXI Century (pp. 72–82). Pedagogical University of Krakow.
Skoršepa, M., & Tortosa Moreno, M. (2014). Faktory ovplyvňujúce motivačnú orientáciu žiakov v počítačom podporovanom laboratóriu. Acta Universitatis Matthiae Belii, ser. chem., 15, 84–91. SPSS INC. PASW Statistics for Windows. (2009). Ver. 18.0. SPSS Inc., Ed. 2009.
Stein, J. S. (1987). The computer as lab partner: Classroom experience gleaned from one year of Microcomputer-Based Laboratory use. Journal of Educational Technology Systems, 15(3), 225–236. https://doi.org/10.2190/12PK-CDVR-EGP4-XDLW
Svec, M. (1999). Improving graphing intrepretation skills and understanding of motion using microcomputer based laboratories. Electronic Journal of Science Education, 3(4).
Šmejkal, P., & Stratilová Urválková, E. (2011). Školní měřicí systémy pro výuku chemie – mají o ně žáci vůbec zájem? In M. Ulrich, & K. Zatloukal (Eds.), Alternativní metody výuky 2011, 9. ročník mezinárodní konference (s. 1–9). Gaudeamus.
Šmejkal, P., & Stratilová Urválková, E. (2012). Support for use of probeware in science for teachers and pupils. In P. Ciesla et al. (Eds.), Chemistry Education in the Light of the Research (pp. 118–123). Pedagogical University of Krakow.
Testa, I., Monroy, G., & Sassi, E. (2002). Students’ reading images in kinematics: the case of real-time graphs. International Journal of Science Education, 24(3), 235–256. https://doi.org/10.1080/09500690110078897
Tho, S.W., & Hussain, B. (2011). The development of a microcomputer-based laboratory (MBL) system for gas pressure law experiment via open source software. International Journal of Education & Development using Information & Communication Technology, 7(1), 42–55.
Thornton, R.K. (1991). Using the microcomputer-based laboratory to improve student conceptual understanding in physics. Turkish Journal of Physics, 15(2), 316–335.
Thornton, R.K., & Sokoloff, D.R. (1990). Learning motion concepts using real-time microcomputer-based laboratory tools. American Journal of Physics, 58(9), 858–867. https://doi.org/10.1119/1.16350
Tinker, R.F. (1984). Microcomputers in the lab: Techniques and applications. Technical Educational Research Center.
Tinker, R.F. (2000). A history of probeware. The Concord Consortium. [online] https://concord.org/sites/default/files/pdf/probeware history.pdf
Tolvanen, S. (2012, nepublikované). Could oceans save us from climate change? Project No. 517587-LLP-1-2011-1-ES-COMENIUS-CMP.
Tortosa Moreno, M. (2012). The use of microcomputer based laboratories in chemistry secondary education: Present state of the art and ideas for research-based practice. Chemistry Education Research and Practice, 13(3), 161–171. https://doi.org/10.1039/C2RP00019A
Tortosa Moreno, M., Skoršepa, M., Guitart Mas, J., Urban-Woldron, H., Aksela, M.K., Tolvanen, S., Stratilová Urválková, E., & Šmejkal, P. (2013). Design of research-based lab sheets for the acquisition of science competencies using ICT real-time experiments. Do students get the point of what they are doing? In C.P. Constantinou, N. Papadouris, & A. Hadjigeorgiu, E-Book Proceedings of the ESERA 2013 Conference “Science Education Research For Evidence-based Teaching and Coherence in Learning”, Strand 4. (pp. 695–703). Nicosia, Cyprus, European Science Education Research Association.
Trumper, R., & Gelbman, M.A. (2001). Microcomputer-Based Contribution to Scientific and Technological Literacy. Journal of Science Education and Technology, 10(3), 213–221. https://doi.org/10.1023/A:1016673931746
Urban-Woldron, H., Tortosa Moreno, M., & Skoršepa, M. (2013). Implementing learning with sensors in science education: Students’ motivational orientations toward using MBL. In In C. P. Constantinou, N. Papadouris, & A. Hadjigeorgiu (Eds.), E-Book Proceedings of the ESERA 2013 Conference “Science education research for
evidence-based teaching and coherence in learning”, Strand 4. (pp. 848–854). Nicosia, Cyprus, European Science Education Research Association.
Vernier Software & Technology. (2019). Company website (homepage). https://www.vernier.com/
Volk, M., Cotič, M., Zajc, M., & Starcic, A. I. (2017). Tablet-based cross-curricular maths vs. traditional maths classroom practice for higher-order learning outcomes. Computers & Education, 114, 1–23. https://doi.org/10.1016/j.compedu.2017.06.004
Voogt, J., Tilya, F., & Akker, J. (2009). Science teacher learning of MBL-supported student-centered science education in the context of secondary education in Tanzania. Journal of Science Education and Technology, 18(5), 429–438. https://doi.org/10.1007/s10956-009-9160-8
Ward, N.D., Finley, R. J., Keil, R. G., & Clay, T.G. (2013). Benefits and limitations of iPads in the high school science classroom and a trophic cascade lesson plan. Journal of Geoscience Education, 61(4), 378–384.
White, R.T., & Gunstone, R. F. (1992). Probing understanding. Routledge.
Yang, X., Li, X., & Lu, T. (2015). Using mobile phones in college classroom settings: Effects of presentation mode and interest on concentration and achievement. Computers & Education, 88, 292–302. https://doi.org/10.1016/j.compedu.2015.06.007
Yeung, A., Pyke, S.M., Sharma, M.D., Barrie, S., Buntine, M.A., Burke da Silva, K., Kable, S.H., & Lim, K. F. (2011). The advancing science by enhancing learning in the laboratory (ASELL) project: The first Australian multidisciplinary workshop. International Journal of Innovation in Science and Mathematics, 19(2), 51–72.
Zelenický, Ľ., Valovičová, Ľ., Jenisová, Z., & Štubňa, M. (2011). Počítačom podporované experimenty. UKF.
Zydney, J. M., & Warner, Z. (2016). Mobile apps for science learning: Review of research. Computers & Education, 94, 1–17. https://doi.org/10.1016/j.compedu.2015.11.001