Abstract
Science curriculum emphasizes scientific knowledge, as well as science process skills (SPS) as the means that enable students to understand scientific concepts fully. Inquiry approach which develops these skills seems to be essential. The aim of the study was to investigate the effect of new designed material on SPS of students who had not experienced inquiry approach teaching before (experimental group) and compare it with SPS of students who use common material (textbooks) and dominant deductive teacher-centered approach still typical for Slovak schools (control group). Study was carried out with 80 eight grade pupils. Pupils’ inquiry reports were analyzed. After intervention the experimental and the control group solved test tasks and results were compared. Results showed that inquiry approach had a significant effect on improvement of pupils’ SPS, especially the ones with low success rate at the beginning, proposing how to test formulated hypothesis and inferring. Some common features of the most problematic SPS were identified. Our findings contribute to the discussion about importance of investment into developing procedural knowledge.
References
Abdi, A. (2014). The effect of inquiry-based learning method on students’ academic achievement in science course. Universal Journal of Educational Research, 2(1), 37–41. https://doi.org/10.13189/ujer.2014.020104
Akben, N. (2015). Improving science process skills in science and technology course activities using an inquiry method. Education and Science, 40(179), 111–132. https://doi.org/10.15390/EB.2015.4266
Anderson, R.D. (2002). Reforming science teaching: What research says about inquiry? Journal of Science Teacher Education, 13(1), 1–12. https://doi.org/10.1023/A:1015171124982
APVV-10-0070. (2019). Dostupné z http://pdf.truni.sk/katedry/kch/veda-vyskum?apvv-14-70-2014-2019
Artayasa, I.P., Susilo, H., Lestari, U. & Indriwati, S.E. (2017). The effectiveness of the three levels of inquiry in improving teacher training students’ science process skills. Journal of Baltic Science Education, 16(6), 908–918.
Balogová, B. & Ješková, Z. (2016). Mapovanie bádateľských zručností žiakov stredných škôl. Biológia, ekológia, chémia, 20(3), 19–25.
Bybee, R.W., Taylor, J.A., Gardner, A., Van Scotter, P., Powell, J.C., Westbrook, A. & Landes, N. (2006). The BSCS 5E instructional model: Origins and effectiveness. Colorado Springs, CO: BSCS. Dostupné z http://bscs.org/sites/default/files/ legacy/BSCS 5E Instructional Model-Full Report.pdf
Beaumont-Walters, Y. & Soyibo, K. (2001). An analysis of high school students’ performance on five integrated science process skills. Research in Science and Technological Education, 19(2), 133–145. https://doi.org/10.1080/02635140120087687
Bell, R. L., Smetana, L. & Binns, I. (2005). Simplifying inquiry instruction. The Science Teacher, 72(7), 30–33.
Capps, D.K. & Crawford, B.A. (2013). Inquiry based instruction and teaching about nature of science: Are they happening? Journal of Science Teacher Education, 24(3), 497–526. https://doi.org/10.1007/s10972-012-9314-z
Coil, D., Wenderoth, M. P., Cunningham, M. & Dirks, C. (2010). Teaching the process of science: faculty perceptions and an effective methodology. CBE – Life Sciences Education, 9(4), 524–535. https://doi.org/10.1187/cbe.10-01-0005
Colvill, M. & Pattie, I. (2002). Science skills – The building blocks for scientific literacy. Investigating: Australian Primary and Junior Scientific Journal, 18(3), 20–22.
Demkanin, P., Bartošovič, L. & Velanová, M. (2012). Simple multiplication as a form of presenting experience with introducing data loggers to physics teachers who do not have any experience with usage of such tools in education. In EDULEARN 12 Proceedings (2993–3002). Barcelona: IATED. Dostupné z http://www.ddp.fmph.uniba.sk/∼bartosovic/papers/Edulearn 2012.pdf
DeSign. (2019). Dostupné z https://www.iteea.org/STEMCenter/6ELearningbyDeSIGN.aspx
Driver, R., Guesne, E. & Tiberghien, A. (1985). Children’s ideas in science. Buckingham: Open University Press.
Duit, R., Gropengießer, H., Kattmann, U., Komorek, M. & Parchmann, I. (2012). The model of educational reconstruction – a framework for improving teaching and learning science. In D. Jorde & J. Dillon (Eds.), Science education research and practice in Europe. Cultural Perpectives in Science Education, vol 5. (13–37). Rotterdam:
SensePublishers. https://doi.org/10.1007/978-94-6091-900-8 2
Durmaz, H. & Mutlu, S. (2016). The effect of an instructional intervention on elementary students’ science process skills. The Journal of Educational Research, 110(4), 433–445. https://doi.org/10.1080/00220671.2015.1118003
Eisenkraft, A. (2003). Enhancing the 5E model. The Science Teacher, 70(6), 56–59.
Fraenkel, J.R. & Wallen, N.E. (2009). How to design and evaluate research in education (7th ed.). New York: McGraw-Hill.
Fradd, S. H., Lee, O. & Sutman, M.K. (2001). Promoting science literacy with English learners through instructional materials development: A case study. Bilingual Research Journal, 25(4), 417–439. https://doi.org/10.1080/15235882.2001.11074464
German, P. J. & Aram, R. J. (1996). Student performances on the science processes of recording data, analyzing data, drawing conclusions, and providing evidence. Journal of Research in Science Education, 33(7), 773–798. https://doi.org/10.1002/(SICI)1098-2736(199609)33:7<773::AID-TEA5>3.0.CO;2-K
Hardianti, T. & Kuswanto, H. (2017). Difference among levels of inquiry: process skills improvement at senior high school in Indonesia. International Journal of Instruction, 10(2), 119–130. Dostupné z http://www.e-iji.net/dosyalar/iji 2017 2 8.pdf
Harlen, W. (1999). Purposes and procedures for assessing science process skills. Assessment in Education: Principles, Policy and Practice, 6(1), 129–144.
Harlen, W. (2000). The teaching of science in primary school. London: David Fulton Publishers Ltd.
Harlen, W. (2006). Teaching, learning and assessing science (5–12). London: SAGE Publications Ltd.
Held, L., Žoldošová, K., Orolínová, M., Juricová, I. & Kotuľáková, K. (2011). Výskumne ladená koncepcia prírodovedného vzdelávania (IBSE v slovenskom kontexte). Trnava: Typi Universitatis Tyrnaviensis.
Hodosyová, M., Útla, J., Vanyová, P. & Lapitková, V. (2015). The development of science process skills in physics education. Social and Behavioral Sciences, 186(2015), 982–989. https://doi.org/10.1016/j.sbspro.2015.04.184
Chessin, D. A. & Moore, V. J. (2004). The 6-E learning model. Science and Children, 42(3), 47–49. Dostupné z http://science.nsta.org/enewsletter/2005-05/sc0411 47.pdf
Choirunnisa, N. L., Prabowo, P. & Suryanti, S. (2018). Improving science process skills for primary school students through 5E unstructional model-based learning. IOP Conf. Series: Journal of Physics: Conf. Series 947. https://doi.org/0.1088/1742-6596/947/1/012021
Kanli, U. & Yagbasan, R. (2008). The effects of a laboratory approaches on the development of university students’ science process skills and conceptual achievement. Essays in Education, Special Edition, 143–153.
Kibnis, N. (2011). Errors in science and their treatment in teaching science. Science in Education, 20(7), 655–685. https://doi.org/10.1007/s11191-010-9289-0
Kim, M. & Chin, C. (2011). Pre-service teachers’ views on practical work with inquiry orientation in textbook-oriented science classrooms. International Journal of Environmental and Science Education, 6(1), 23–37. Dostupné z https://files.eric.ed.gov/fulltext/EJ930276.pdf
Kotuľáková, K. & Bugajová, D. (2017). Spôsobilosti vedeckej práce v kontexte dnešnej školy – posun od štruktúrovaného k riadenému skúmaniu. In D. Kričfaluši & M. Mucha (Eds.), Aktuální aspekty pregraduální přípravy a postgraduálního vzdelávání učitelů chemie (65–74) [CD-ROM]. Ostrava: Ostravská univerzita, Přírodovědecká fakulta.
Krathwohl, D. (1998). Methods of educational and social research: An integrated approach (2nd ed.) New York: Longman.
Kuhn, D., Amsel, E. & O’Loughlin, M. (1988). The development of scientific thinking. New York: Harcourt Brace Jovanovich.
Kurikulum štátu Viktória, Austrália. (2018). Dostupné z https://victoriancurriculum.vcaa.vic.edu.au/science/curriculum/f-10#level=9-10
Lapitková, V., Hodosyová, M., Vanyová, M. & Vnuková, P. (2015). Spôsobilosti vedeckej práce v prírodovednom vzdelávaní. Bratislava: Knižné a edičné centrum FMFI UK.
Lapitková, V. (2016). Spôsobilosti vedeckej práce ako predpoklad naplnenia nosných myšlienok o charaktere vedy. In L. Held (Ed.), Východiská prípravy prírodovedného kurikula pre základnú školu 2020 II (209–238). Trnava: Typi Universitas Tyrnaviensis.
Lati, W., Supasorn, S. & Promarak, V. (2012). Enhancement of learning achievement and integrated science process skills using science inquiry learning activities of chemical reaction rates. Social and Behavioral Sciences, 46(2012), 4471–4475.
Llewellyn, D. (2002). Inquire within: Implementing inquiry-bases science standards. London: Corwin Press.
Llewellyn, D. (2013). Teaching high school science through inquiry and argumentation. California: Corwin A Sage Company.
Marshall, J.F., Smart, J.B. & Daniel, W.A. (2016). Inquiy-based instruction: A possible solution to improving student learning of both science concepts and scientific practices. International Journal of Science and Mathematics Education, 15(5), 777–796. https://doi.org/10.1007/s10763-016-9718-x
Matušíková, N. (2017). Rozvoj spôsobilostí vedeckej práce v dnes platnom kurikule [Diplomová práca]. Trnavská univerzita v Trnave.
Miklovičová, J., Galábová, A., Valovič, J. & Gondžúrová, K. (2017). Národná správa PISA 2015. Bratislava: NUCEM.
Dostupné z http://www.nucem.sk/documents/27/NS PISA 2015.pdf
Miles, M. & Huberman, A. M. (1994). Qualitative data analysis: An expended sourcebook. California: Sage Publications.
Orolínová, M. & Kotuľáková, K. (2014). Rozvoj spôsobilostí vedeckej práce v podmienkach kontinuálneho vzdelávania učiteľov. Trnava: Typi Universitatis Tyrnaviensis.
Padilla, M. J. (1986). The science process skills. Research matters. . . to the science teacher. National association for research in science teaching. ERIC Document Reproduction Service No. ED 266 961.
Park, J. (2006). Modelling analysis of students’ processes of generating scientific explanatory hypotheses. International Journal of Science Education, 28(5), 469–489. https://doi.org/10.1080/09500690500404540
Pedaste, M., Mäeots, M., Siiman, L.O., de Jong, T., van Riesen, S.A.N., Kamp, E.T., Manoli, C.C., Zacharia, Z.C. & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14(1), 47–61. https://doi.org/10.1016/j.edurev.2015.02.003
PISA. (2015). Dostupné z http://www.nucem.sk/documents//27//NS PISA 2015.pdf
Prayitno, A.A., Corenima, D., Susilo, H., Zubaidah, S. & Ramli, M. (2017). Closing the science process skills gap between students with high and low level academic achievement. Journal of Baltic Science Education, 16(2), 266–277.
Ramayanti, S., Utari, S. & Saepuzaman, D. (2017). Training students’ science process skills through didactic design on work and energy. Journal of Physics: Conf. Series 895, 1–7. IOP Publishing Ltd. Dostupné z http://iopscience.iop.org/article/10.1088/1742-6596/895/1/012110/meta. https://doi.org/10.1088/1742-6596/895/1/012110
Reif, F. & Larkin, J.H. (1991). Cognition in scientific and everyday domains: Comparison and implications. Journal of Research in Science Teaching, 28(9), 733–760. https://doi.org/10.1002/tea.3660280904
Rokos, L. & Vomáčková, V. (2017). Hodnocení efektivity badatelsky orientovaného vyučování v laboratorních pracích při výuce fyziologie člověka na základní škole a nižším stupni gymnázia. Scientia in educatione, 8(1), 32–45.
Sadeh, I. & Zion, M. (2012). Which type of inquiry project do high school biology students prefer: open or guided? Research in Science Education, 42(5), 831–848. https://doi.org/10.1007/s11165-011-9222-9
Sari, P.M., Sudargo, F. & Priyandoko, D. (2018). Correlation among science process skill, concept comprehension, and scientific attitude on regulation system materials. Journal of Physics: Conf. Series 948, 1–4. IOP Publishing Ltd. Dostupné z http://iopscience.iop.org/article/10.1088/1742-6596/948/1/012008/meta. https://doi.org/10.1088/1742-6596/948/1/012008
Seung, E., Choi, B. & Pestel, B. (2016). University students’ understanding of chemistry processes and the quality of evidence in their written arguments. Eurasia Journal of Mathematics, Science and Technology Education, 12(4), 991–1008. https://doi.org/10.12973/eurasia.2016.1248a
ŠVP. (2015). Dostupné z http://www.statpedu.sk/sk/svp/inovovany-statny-vzdelavaciprogram/inovovany-svp-2.stupen-zs/clovek-priroda/
Taylor, D., Rogers, A. L. & Veal, W.R. (2009). Using self-reflection to increase science process skills in the general chemistry laboratory. Journal of Chemical Education, 86(3), 393–398. https://doi.org/10.1021/ed086p393
Valanides, N., Papageorgiou, M. & Angeli, C. (2014). Scientific investigations of elementary school children. Journal of Science Education and Technology, 23(1), 26–36. https://doi.org/10.1007/s10956-013-9448-6
Vallová, N. (2012). Biochemická problematika a jej reflexia v príprave učiteľov na vyučovanie [Diplomová práca]. Trnavská univerzita v Trnave.
Vartak, R., Ronad, A. & Ghanekar, V. (2013). Enzyme assay: An investigative approach to enhance science process skills. Journal of Biological Education, 47(4), 253–257. https://doi.org/10.1080/00219266.2013.801871
White, B.Y. & Frederiksen, J.R. (1998). Inquiry, modeling, and metacognition: making science accessible to all students. Cognition and Instruction, 16(1), 3–118. https://doi.org/10.1207/s1532690xci1601 2
Yip, D.Y. (2007). Biology students’ understanding of the concept of hypothesis. Teaching Science, 53(4), 23–27.
Zion, M. & Mendelovici, R. (2012). Moving from structured to open inquiry: challenges and limits. Science Education International, 23(4), 383–399.