Pozice Omega – specifická fáze vnímání pojmu nekonečno
PDF (English)

Jak citovat

Cihlář, J., Eisenmann, P., & Krátká, M. (2015). Pozice Omega – specifická fáze vnímání pojmu nekonečno. Scientia in Educatione, 6(2), 51-73. https://doi.org/10.14712/18047106.184

Abstrakt

Článek popisuje specifickou fázi ontogenetického vývoje porozumění nekonečnu nazývanou pozice omega, jejíž identifikace je jedním z výsledků rozsáhlého výzkumu zaměřeného na vnímání pojmu nekonečno. Prvních dvou částí výzkumu se v letech 2008 až 2011 postupně zúčastnilo celkem 1 432 českých žáků a studentů ve věku od 8 do 20 let. V článku je podrobně popsána závěrečná kvalitativní část výzkumu zaměřená na interview s vysokoškolskými studenty s cílem diagnostikovat tuto fázi v jejich pojetí nekonečna v různých kontextech. Článek popisuje možnosti identifikace pozice omega a její konsekvence pro úspěšné studium těch pojmů a idejí matematiky, které jsou spjaty s nekonečnem. Dává ji dále do souvislosti s potenciálním a aktuálním nekonečnem, vymezuje jednotlivé vývojové fáze pomocí pojmu horizont a vysvětluje možnosti vzájemného ovlivňování zmíněných vývojových fází s využitím pojmů primární a sekundární intuice.
https://doi.org/10.14712/18047106.184
PDF (English)

Reference

Bauer, L. (2011). Mathematik, Intuition, Formalisierung: eine Untersuchung von Schülerinnen- und Schülervorstellungen zu 0.¯9. Journal für Mathematik-Didaktik, 32(1), 79–102.

Brousseau, G. (1997). Theory of didactical situations in mathematics: Didactique des mathématiques, 1970–1990. Boston: Kluwer Academic Publishers.

Brousseau, G. & Sarrazy, B. (2002). Glossaire de quelques concepts de la théorie des situations didactiques en mathématiques. Bordeaux: DAEST, Université Bordeaux 2.

Brown, T. & Heywood, D. (2010). Geometry, subjectivity and the seduction of language: the regulation of spatial perception. Educational Studies in Mathematics, 77, 351–367.

Cihlář, J., Eisenmann, P. & Krátká, M. (2013). Forming the infinity concept through overcoming obstacles. Ústí nad Labem: UJEP.

Cihlář, J., Eisenmann, P., Krátká, M. & Vopěnka, P. (2009). Cognitive conflict as a tool of overcoming obstacles in understanding infinity. Teaching Mathematics and Computer Science, 7, 279–295.

Conway, J. H. (2001). On numbers and games. London: Academic Press, 1976. Second edition: A. K. Peters, Wellesley/MA.

Dubinsky, E., Weller, K., McDonald, M. A. & Brown, A. (2005a). Some historical issues and paradoxes regarding the concept of infinity: An APOS-Based Analysis, Part 1. Educational Studies in Mathematics, 58, 335–359.

Dubinsky, E., Weller, K., McDonald, M. A. & Brown, A. (2005b). Some historical issues and paradoxes regarding the concept of infinity: An APOS-Based Analysis, Part 2. Educational Studies in Mathematics, 60, 253–266.

Edwards, B. S., Dubinsky, E. & McDonald, M. A. (2005). Advanced mathematical thinking. Mathematical Thinking and Learning, 7, 15–25.

Ely, R. (2010). Nonstandard student conceptions about infinitesimals. Journal for Research in Mathematics Education, 41, 117–146.

Fischbein, E. (1987). Intuition in science and mathematics. Dodrecht: Reidel.

Fischbein, E. (2001). Tacit models and infinity. Educational Studies in Mathematics, 48, 309–329. Scientia in educatione 71 6(2), 2015, p. 51–73

Hannula, M., Pehkonen, E., Maijala, H. & Soro, R. (2006). Students’ understanding of infinity. In Teaching mathematics: retrospective and perspectives. Proceedings of the 7th international conference (79–83). Tartu: Eritrea.

Jahnke, H. N. (2001). Cantor’s cardinal and ordinal infinities: An epistemological and didactic view. Educational Studies in Mathematics, 48, 175–197.

Jirotková, D. & Littler, G. (2004). An insight into pupils’ understanding of infinity in a geometrical context. In Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (97–104), Bergen: Univ. College.

Juter, K. (2006). Limits of functions as they developed through time and as students learn them today. Mathematical Thinking and Learning, 8, 407–431.

Katz, K. U. & Katz, M. G. (2010). Zooming in on infinitesimal 1–.9. . . in a post-triumvirate era. Educational Studies in Mathematics, 74, 259–273.

Katz, V., Dorier, J. L., Bekken, O. & Sierpinska, A. (2000). The role of historical analysis in predicting and interpreting students’ difficulties in mathematics. In J. Fauvel & J. V. Maanen (Eds.), History in Mathematics Education (149–161). Dordrecht: Kluwer Academic Publisher.

Kidron, I. (2011). Tacit models, treasured intuitions and the discrete — continuous interplay. Educational Studies in Mathematics, 78, 109–126.

Kidron, I. & Tall, D. (2015). The roles of visualization and symbolism in the potential and actual infinity of the limit process. Educational Studies in Mathematics, 88, 183–199.

Krátká, M. (2005). A geometrical picture as an obstacle. In Proceedings of SEMT’05 (179–186). Praha: UK PedF.

Krátká, M. (2010). Zdroje epistemologických překážek v porozumění nekonečnu. Scientia in educatione, 1(1), 187–100.

Monaghan, J. (2001). Young people’s ideas of infinity. Educational Studies in Mathematics, 48, 239–257.

Piaget, J. (1977). The development of thought: Equilibration of cognitive structures. New York: The Viking Press.

Radford, L., Boero, P., & Vasco, C. (2000). Historical formation and student understanding of mathematics: Epistemological assumptions framing interpretations of students understanding of mathematics. In J. Fauvel & J. Van Maanen (Eds.), History in mathematics education. Dordrecht: Kluwer Academic Publisher.

Robinson, A. (1996). Nonstandard analysis. Princeton University Press.

Sierpinska, A. (1994). Understanding in mathematics. Washington, D.C.: The Falmer Press London.

Singer, F. M. & Voica, C. (2008). Between perception and intuition: Learning about infinity. The Journal of Mathematical Behavior, 27, 188–205.

Swan, M. (1983). Teaching decimal place value. A comparative study of conflict and positive only approaches. Nottingham: University of Nottingham, Shell Centre for Mathematical Education.

Tall, D. O. (1976). Conflicts and catastrophes in the learning of mathematics, Mathematical Education for Teaching, 2(4), 2–18.

Tall, D. O. (1977). Cognitive conflicts and the learning of mathematics. In Proceedings of PME 1, Utrecht.

Tall, D. O. (1991). The psychology of advanced mathematical thinking. In D. Tall (Ed.), Mathematics Education Library: Vol. 11 Advanced Mathematical Thinking (3–21). Dordrecht: Kluwer Academic Publisher.

Tall, D. (2001). Natural and formal infinities. Educational Studies in Mathematics, 48, 199–238.

Tall, D. O. (2009). Dynamic mathematics and the blending of knowledge structures in the calculus. ZDM. The International Journal on Mathematics Education, 41, 481–492.

Tall, D. & Tirosh, D. (2001). Infinity — the never-ending struggle. Educational Studies in Mathematics, 48, 129–136.

Tall, D. & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limit and continuity. Educational Studies in Mathematics, 12, 151–169.

Tsamir, P. (2001). When “The Same” is not perceived as such: The case of infinity sets. Educational Studies in Mathematics, 48, 289–307.

Vamvakoussi, X. & Vosniadou, S. (2004). Understanding the structure of the set of rational numbers: a conceptual chase approach. Learning and Instruction, 14, 453–467.

Vopěnka, P. (2011). Velká iluze matematiky XX. století a nové základy. Plzeň: Vydavatelství Západočeské univerzity v Plzni.

Yopp, D. A., Burroughs, E. A. & Lindaman, B. J. (2011). Why it is important for in-service elementary mathematics teachers to understand the equality .999 . . . = 1. Journal of Mathematical Behavior, 30, 304–318.