Teaching Molecular Biology at Grammar Schools: Analysis of the Current State and Potential of its Support
PDF (Čeština)

How to Cite

Janštová, V., & Jáč, M. (2015). Teaching Molecular Biology at Grammar Schools: Analysis of the Current State and Potential of its Support. Scientia in Educatione, 6(1), 14-39. https://doi.org/10.14712/18047106.145

Abstract

Molecular biology is a very progressive field of science. Moreover, its methods and results are closely connected with our everyday lives. It is therefore crucial to implement this field into grammar school biology curriculum. The first aim of this study was to analyse how the molecular biology content is distributed into different years in School Education Programmes (SEPs) of Czech grammar schools and which molecular biology topics are included and how often. Another aim of the study was to test the comprehensibility and attractiveness of advanced molecular biology laboratory courses for grammar school students. The implementation of molecular biology topics into compulsory and optional biology and chemistry classes in the SEPs of 160 grammar schools was evaluated together with their distribution into different years. The data was analysed by a cluster analysis and subsequent chi-square test for independence. During years 2011–2013, we organized four different types of laboratory courses focused on molecular biology topics. The laboratory courses took place at the Faculty of Science, Charles University in Prague or at participating grammar schools and were taught by a university lecturer or a grammar school biology teacher. Students who participated in the courses (n = 466) filled in an evaluation questionnaire at the end of the laboratory exercise. The data was analysed by the analysis of variance. The results indicate that molecular biology topics in the SEPs are mostly included in a single year (usually the last year of compulsory biology and chemistry education). Some of the topics were not included in the majority of compulsory classes and were found mainly in optional classes. The practical laboratory courses were rated very positively by students. Significant differences were found in ratings of different types of courses. Student ratings were also dependent on other variables (lecturer, site of the course). Based on the results, our conclusion is that molecular biology should be implemented in the grammar school curriculum much more with the support of advanced laboratory courses.
https://doi.org/10.14712/18047106.145
PDF (Čeština)

References

Adresář škol a školských zařízení – revize 121203 (2014). Praha: Ministerstvo mládeže, školství a tělovýchovy a Ústav pro informace ve vzdělávání. Dostupné z http://stistko.uiv.cz/registr/vybskolrn.asp

Balgopal, M. & Bondy, C. (2011). Antigenic shift and drift. Science Teacher, 78(2), 42–46.

Ben-Nun, B. S., Stolarsky, M. & Yarden, A. (2009). Learning molecular genetics in teacher-led outreach laboratories. Journal of Biological Education, 44(1), 19–25.

Bowling, B., Zimmer, E. & Pyatt, R. E. (2014). Bringing next-generation sequencing into the classroom through a comparison of molecular biology techniques. The American Biology Teacher, 76(6), 396–401.

Byrd, J. J. (2000). Teaching outside the (cereal) box: a molecular genetics activity. The American Biology Teacher, 62(7), 508–511.

Cohen, L., Manion, L. & Morrison, K. (2011). Research methods in education. New York: Routledge.

Costenson, K. & Lawson, A. E. (1986). Why isn’t inquiry used in more classrooms? The American Biology Teacher, 48(3), 150–158.

Donovan, J. & Venville, G. (2005). A concrete model for teaching about genes and DNA to young students. Teaching Science, 51(4), 29–31.

Drits-Esser, D., Malone, M., Barber, N. C. & Stark, L. A. (2014). Beyond the central dogma. The American Biology Teacher, 76(6), 365–369.

Falteisek, L., Černý, J. & Janštová, V. (2013). Simplified technique to evaluate human CCR5 genetic polymorphism. The American Biology Teacher, 75(9), 704–707.

Franke, G. & Bogner, F. X. (2011). Conceptual change in students’ molecular biology education: tilting at wind mills? Journal of Educational Research, 104(1), 7–18.

Gavora, P. (2010). Úvod do pedagogického výzkumu. Brno: Paido.

Gallagher, S. R., Coon, W., Donley, K., Scott, A. & Goldberg, D. S. (2011). A First attempt to bring computational biology into advanced high school biology classrooms. PLoS Computational Biology, 7(10), e1002244.

Gelbart, H., Brill, G. & Yarden, A. (2009). The impact of a web-based research simulation in bioinformatics on students’ understanding of genetics. Research in Science Education, 39(5), 725–751.

Gelbart, H. & Yarden, A. (2006). Learning genetics through an authentic research simulation in bioinformatics. Journal of Biological Education, 40(3), 107–112.

German, P. J. (1996). Analysis of nine school biology laboratory manuals: promoting scientific inquiry. Journal of Research in Science Teaching, 33(5), 475–499.

Gormally, C., Brickman, P., Hallar, B. & Armstrong, N. (2009). Effects of inquiry-based learning on students’ science literacy skills and confidence. International Journal for the Scholarship of Teaching and Learning, 3(2), 1–22.

Imperial, S. & Boronat, A. (2005). Determination of the Rh factor: a practical illustrating the use of the polymerase chain reaction. Biochemistry and Molecular Biology Education, 33(1), 50–53.

Janík, T., Knecht, P., Najvar, P., Pavlas, T., Slavík, J. & Solnička, D. (2010a). Kurikulární reforma na gymnáziích v rozhovorech s koordinátory pilotních a partnerských škol. Praha: Výzkumný ústav pedagogický v Praze.

Janík, T., Janko, T., Knecht, P., Kubiatko, M., Najvar, P., Pavlas, T., Slavík, J., Solnička, D. & Vlčková, K. (2010b). Kurikulární reforma na gymnáziích – výsledky dotazníkového šetření. Praha: Výzkumný ústav pedagogický v Praze.

Janík, T. & Slavík, J. (2007). Vztah obor–vyučovací předmět jako metodologický problém. Orbis scholae, 2(1), 54–66.

Janštová, V., Pavlasová, L. & Černý, J. (2014). Inquiry based practical course focused on proteins. In Rusek, M. & Stárková, D. (Eds.). Projektové vyučování v přírodovědných předmětech. Praha: Pedagogická fakulta Univerzity Karlovy v Praze.

Kidman, G. (2008). Biotechnology education: topics of interest to students and teachers. In Hamman, M., Reiss, M., Boulter, C. & Tunnicliffe, S. D. (Eds.). Biology in context: learning and teaching for the twenty-first century. London: Institute of Education, University of London.

Kočárek, E. (2004). Genetika. Praha: Scientia.

Lewis, J. & Wood-Robinson, C. (2000). Genes, chromosomes, cell division and inheritance — do students see any relationship? International Journal of Science Education, 22(2), 177–195.

Malacinski, G. M. & Zell, P. W. (1996). Manipulating the “invisible”: learning molecular biology using inexpensive models. The American Biology Teacher, 58(7), 428–432.

Miller, K. R. & Levine, J. S. (2010). Biology (student edition). Boston: Pearson Education, Inc.

Ministerstvo školství, mládeže a tělovýchovy České republiky (1999). Učební dokumenty pro gymnázia. Praha: Nakladatelství Fortuna.

National Committee on Science Education Standards and Assessment (1996). National Science Education Standards. Washington, D. C.: National Research Council, National Academy Press.

Nurse, P. (2003). The great ideas of biology. Clinical Medicine, 3(6), 560–568.

Offner, S. & Pohlman, R. F. (2010). Visualizing proteins & their Evolution. The American Biology Teacher, 72(6), 373–376.

Ondřej, V. & Dvořák, P. (2012). Bioinformatics: A history of evolution “in silico”. Journal of Biological Education, 46(4), 252–259.

Papáček, M. (2010). Badatelsky orientované přírodovědné vyučování – cesta pro vzdělávání generací Y, Z a alfa? Scientia in educatione, 1(1), 33–49.

Rámcový vzdělávací program pro gymnázia (2007). Praha: Výzkumný ústav pedagogický v Praze. Dostupné z http://www.vuppraha.cz/wp-content/uploads/2009/12/RVPG-2007-07 final.pdf

Rejstřík škol a školských zařízení – verze 2.39 (2014). Praha: Ministerstvo mládeže, školství a tělovýchovy. Dostupné z http://rejskol.msmt.cz/

Scharfenberg, F. J. & Bogner, F. X. (2013a). Instructional efficiency of tutoring in an outreach gene technology laboratory. Research in Science Education, 43(3), 1 267–1 288.

Scharfenberg, F. J. & Bogner, F. X. (2013b). Teaching gene technology in an outreach lab: students’ assigned cognitive load clusters and the clusters’ relationships to learner characteristics, laboratory variables, and cognitive achievement. Research in Science Education, 43(1), 141–161.

Srinivasan (1998). Exploring the limitations of the ‘DNA as a videotape’ analogy. Journal of Biological Education, 33(1), 42–44.

Šmarda, J. (2003). Genetika pro gymnázia. Praha: Nakladatelství Fortuna.

Tsui, C.-Y. & Treagust, D. (2003). Learning genetics with computer dragons. Journal of Biological Education, 37(2), 96–98.

Tsui, C.-Y. & Treagust, D. (2007). Understanding genetics: Analysis of secondary students’ conceptual status. Journal of Research in Science Teaching, 44(2), 205–235.

van den Berg, E. (2013). Didaktická znalost obsahu v laboratorní výuce: od práce s přístroji k práci s myšlenkami. Scientia in educatione, 4(2), 74–92.

Vařejka, P. (2012). Maturitní témata z molekulární biologie. Brno: Gymnázium, třída Kapitána Jaroše 14.

Venville, G. & Donovan, J. (2006). Analogies for life: a subjective view of analogies and metaphors used to teach about genes and DNA. Teaching Science: The Journal of the Australian Science Teachers Association, 52(1), 18–22.

Vidal, M. (2009). A unifying view of 21st century systems biology. FEBS Letters, 583(24), 3 891–3 894.

Wefer, S. H. & Anderson, O. R. (2008). Identification of students’ content mastery and cognitive and affective percepts of a bioinformatics miniunit: a case study with recommendations for teacher education. Journal of Science Teacher Education, 19(4), 355–373.

Wefer, S. H. & Sheppard, K. (2008). Bioinformatics in high school biology curricula: a study of state science standards. CBE-Life Sciences Education, 7(1), 155–162.

Wood, L. & Gebhardt, P. (2013). Bioinformatics goes to school – new avenues for teaching contemporary biology. PLoS Computational Biology, 9(6), e1003089.

Woody, S. & Himelblau, E. (2013). Understanding & teaching genetics using analogies. The American Biology Teacher, 75(9), 664–669.