Srovnávací analýza biologické části národního kurikula na 2. stupni základních škol České republice a ve vybraných postkomunistických zemích
pdf (English)

Jak citovat

Poupová, J., Janštová, V., Kuba, R., & Mourek, J. (2019). Srovnávací analýza biologické části národního kurikula na 2. stupni základních škol České republice a ve vybraných postkomunistických zemích. Scientia in Educatione, 10(3), 94-124. https://doi.org/10.14712/18047106.1294

Abstrakt

V České republice v současné době probíhá revize národních kurikulárních dokumentů pro základní a střední školy, kterou doprovází intenzivní odborná diskuse. Naším cílem je proto vybrat klíčové aspekty zahraničních kurikulárních dokumentů, které by mohly pro českou kurikulární reformu posloužit jako inspirace.
V naší studii porovnáváme koncepci biologické části platných národních kurikulárních dokumentů pro druhý stupeň základní školy (a odpovídající stupně nižšího sekundárního vzdělávání v zahraničí) v České republice a v pěti vybraných evropských postkomunistických zemích (Estonsku, Maďarsku, Polsku, Slovensku a Slovinsku). Zaměřili jsme se na následující klíčové aspekty: a) hlavní charakteristiky biologie jako školního předmětu (respektive biologické části předmětu „přírodní vědy); b) specifika a uspořádání vzdělávacího obsahu; c) pojetí biologie jako vědní disciplíny; d) didaktická doporučení a požadavky; e) pojetí jednotlivých klíčových biologických disciplín; f) další kritéria, jako například důraz na lokální aspekty nebo občanskou angažovanost.
Za velmi inspirativní považujeme vzdělávací programy Estonska a Slovinska, ve kterých jsou obecné vzdělávací cíle velmi dobře rozpracované na úroveň konkrétního vzdělávacího obsahu a požadovaných standardů znalostí. Pro jednotlivá témata poskytují náměty na praktickou činnost žáků a využití ICT ve výuce. Slovinské kurikulum uplatňuje ve výuce biologických témat holistický přístup. Estonské kurikulum poskytuje dobrý příklad začlenění místních aspektů, jako jsou typické místní ekosystémy. Kurikula obou těchto
států zdůrazňují, že biologické znalosti a přírodovědná gramotnost mají zásadní význam pro život jednotlivce i společnosti.

https://doi.org/10.14712/18047106.1294
pdf (English)

Reference

Abrahams, I. (2007). An unrealistic image of science. School Science Review, 88(324), 119–122.

Ayas, A., C¸ lepni, S. & Akdeniz, A.R. (1993). Development of the Turkish secondary science curriculum. Science Education, 77(4), 433–440.

Bílek, M. (2008). Zájem žáků o přírodní vědy jako předmět výzkumných studií a problémy aplikace jejich výsledků v pedagogické praxi. Acta Didactica, 2008(2), 1–15.

Bogner, F.X. & Sotiriou, S. (2014). Pathway towards a standard-based approach to teaching science by inquiry. In C.P. Constantinou, N. Papadouris & A. Hadjigeorgiou (Eds.), E-Book Proceedings of the ESERA 2013 Conference: Science education research for evidence-based teaching and coherence in learning (2579–2585). Nicosia, Cyprus: European Science Education Research Association.

Cimer, A. (2012). What makes biology learning difficult and effective: Students’ views. Educational Research and Reviews, 7(3), 61–71. https://doi.org/10.5897/ERR11.205

Dawson, C. (2000). Upper primary boys’ and girls’ interests in science: have they changed since 1980? International Journal of Science Education, 22(6), 557–570. https://doi.org/10.1080/095006900289660

Dvořák, D., Starý, K. & Urbánek, P. (2015). Malá škola po pěti letech: proměny školy v době reformy. Pedagogická orientace, 25(1), 9–31. https://doi.org/10.5817/PedOr2015-1-9

Ebenezer, J.V. & Zoller, U. (1993). Grade 10 students’ perceptions of and attitudes toward science teaching and school science. Journal of Research in Science Teaching, 30(2), 175–186. https://doi.org/10.1002/tea.3660300205

Erdogan, M., Kostova, Z. & Marcinkowski, T. (2009). Components of environmental literacy in elementary science education curriculum in Bulgaria and Turkey. Eurasia Journal of Mathematics, Science & Technology Education, 5(1), 15–26. https://doi.org/10.12973/ejmste/75253

Fančovičová, J. & Prokop, P. (2017). Effects of hands-on activities on conservation, disgust and knowledge of woodlice. Eurasia Journal of Mathematics, Science and Technology Education, 14(3), 721–729. https://doi.org/10.12973/ejmste/80817

Folta, J. (1998) Dějiny vědy a techniky 5. 15. a 16. seminář pro vyučující dějinám věd a techniky. In J. Folta (Ed.), Rozpravy NTM 157 (69–74). Praha: NTM.

Freeman, S., Eddy, S. L., McDonough, M., Smith, M.K., Okoroafor, N., Jordt, H. & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 8410–8415. https://doi.org/10.1073/pnas.1319030111

Goodrum, D., Rennie, L. J. & Hackling, M.W. (2001). The status and quality of teaching and learning of science in Australian schools: A research report. Canberra: Department of Education, Training and Youth Affairs.

Government of the Republic of Estonia. (2014a). Appendix 4 of regulation no 2 of the government of the republic of 6 January 2011. National curriculum for upper secondary schools (last amendment 29 August 2014). Subject Field: Natural Science. Tallinn. Available at https://www.hm.ee/sites/default/files/est upper secondary nat cur 2014 appendix 4 final.pdf

Government of the Republic of Estonia. (2014b). National curriculum for basic schools – regulation (last amendment 29 August 2014). Tallinn. Available at https://www.hm.ee/sites/default/files/est basic school nat cur 2014 general part 1.pdf

Grajkowski, W., Ostrowska, B. & Poziomek, U. (2014). Core curriculum for science subjects in selected countries – study report. Warsaw: Educational Research Institute.

Grant, D. M., Malloy, A. D. & Hollowell, G. P. (2013). Enhancing students’ interest in science and technology through cross-disciplinary collaboration and active learning techniques. Journal of Information Technology Education: Innovations in Practice, 12, 101–112. https://doi.org/10.28945/1782

Hassan, G. (2011). Students’ views of science: A comparison between tertiary and secondary school students. Science Educator, 20(2), 54–61.

Haste, H. (2004). Science in my future: A study of values and beliefs in relation to science and technology amongst 11–21 year olds. London: Nestle Social research Programme. Available at http://opus.bath.ac.uk/22269/

Hayes, M.T. & Deyhle, D. (2001). Constructing difference: A comparative study of elementary science curriculum differentiation. Science Education, 85(3), 239–262. https://doi.org/10.1002/sce.1008

Holstermann, N., Grube, D. & Bögeholz, S. (2010). Hands-on activities and their influence on students’ interest. Research in Science Education, 40(5), 743–757. https://doi.org/10.1007/s11165-009-9142-0

Hong, J.-L., Shim, K.-C. & Chang, N.-K. (1998). A study of Korean middle school students’ interests in biology and their implications for biology education. International Journal of Science Education, 20(8), 989–999. https://doi.org/10.1080/0950069980200806

Horner, J.K. & Rubba, P. (1978). The myth of the absolute truth. The Science Teacher, 45(1), 29–30.

Janík, T. (2013). Od reformy kurikula k produktivní kultuře vyučování a učení. Pedagogická orientace, 23(5), 634–663. https://doi.org/10.5817/PedOr2013-5-634

Janík, T., Janko, T., Knecht, P., Kubiatko, M., Najvar, P., Pavlas, T. & Vlčková, K. (2010). Kurikulární reforma na gymnáziích – výsledky dotazníkového šetření. Praha: Výzkumný ústav pedagogický v Praze. Available at http://www.nuv.cz/file/170

Janštová, V. (2017). Invertebrate dissections can motivate pupils toward studying biology. In M. Rusek, D. Stárková & I. B. Metelková (Eds.), Project-based Education in Science Education XIV. (25–32). Prague: Charles University, Faculty of Education.

Karpenko, V. (1997). Výuka dějin chemie na vysokých školách. In J. Folta (Ed.), Dějiny vědy a techniky 3. Rozpravy NTM, 145 (121–125). Praha: NTM.

Kim, M., Lavonen, J. & Ogawa, M. (2009). Experts’ opinions on the high achievement of scientific literacy in PISA 2003: A comparative study in Finland and Korea. Eurasia Journal of Mathematics, Science & Technology Education, 5(4), 379–393. https://doi.org/10.12973/ejmste/75288

Koul, R.B. & Fisher, D. (2002). Science classroom learning environments in India. In International Educational Research Conference of the Australian Association for Research in Education (AARE). Brisbane, Australia. Available at https://www.aare.edu.au/data/publications/2002/kou02003.pdf

Kuřina, F. (2014). Kompetence a školní praxe. Rozpaky oborového didaktika nad kurikulární reformou. Pedagogická orientace, 24(3), 433–442. https://doi.org/10.5817/PedOr2014-3-433

Lindahl, B. (2003). Pupils’ responses to school science and technology? A longitudinal study of pathways to upper secondary school. Göteborg Studies in Educational Sciences, 196, 1–18. Available at https://gupea.ub.gu.se/bitstream/2077/9599/1/gupea 2077 9599 1.pdf

Lindner, M. (2014). Project learning for university students. In M. Rusek, D. Stárková (Eds.), Project-based Education in Science XI. (10–15). Praha: Pedagogická fakulta Univerzity Karlovy v Praze.

Lyons, T. (2006). Different countries, same science classes: Students’ experiences of school science in their own words. International Journal of Science Education, 28(6), 591–613. https://doi.org/10.1080/09500690500339621

Matthews, M.R. (2011). Teaching the philosophical and worldview components of science – some considerations. In P.V. Kokkotas, K. S. Malamitsa & A.A. Rizzaki (Eds.), Adapting historical knowledge production to the classroom (3–16). Rotterdam: Sense publishers.

MNE (Ministry of National Education of Poland). (2018). Nowa podstawa programowa (zkola podstawowa IV–VIII). https://podstawaprogramowa.pl/Szkola-podstawowa-IV-VIII

MIZS (Ministry of Education, Science and Sport of the Republic of Slovenia). (2011a). Program osnova šola. Biologija. Učni načrt. Ljubljana. Available at http://www.mizs.gov.si/fileadmin/mizs.gov.si/pageuploads/podrocje/os/prenovljeni UN/UN kemija.pdf

MIZS (Ministry of Education, Science and Sport of the Republic of Slovenia). (2011b). Program osnovna šola. Geografija – Učni načrt. Ljubljana: MIZS. Available at http://www.mizs.gov.si/fileadmin/mizs.gov.si/pageuploads/podrocje/os/prenovljeni UN/UN geografija.pdf

MIZS (Ministry of Education, Science and Sport of the Republic of Slovenia). (2011c) Program osnovna šola. Naravoslovje – Učni načrt. Ljubljana: MIZS. Available at http://www.mizs.gov.si/fileadmin/mizs.gov.si/pageuploads/podrocje/os/prenovljeni UN/UN naravoslovje.pdf

MIZS (Ministry of Education, Science and Sport of the Republic of Slovenia). (2014). Predmetnik osnovne šole. Available at http://www.mizs.gov.si/fileadmin/mizs.gov.si/pageuploads/podrocje/os/devetletka/predmetniki/Pred 14 OS 4 12.pdf

MIZS (Ministry of Education, Science and Sport of the Republic of Slovenia). (undated) Predmetnik osnovne šole: Izbirni predmeti v osnovni šoli. Available athttp://www.mizs.gov.si/si/delovna podrocja/direktorat za predsolsko vzgojo in osnovno solstvo/osnovno solstvo/program/izbirni predmeti v osnovni soli/#c17861

MŠMT ČR (Ministerstvo školství, mládeže a tělovýchovy České republiky). (1997). Vzdělávací program Národní škola. Praha: SPN.

MŠMT ČR (Ministerstvo školství, mládeže a tělovýchovy České republiky). (2003). Vzdělávací program Základní škola. Praha: Fortuna.

MŠMT ČR (Ministerstvo školství, mládeže a tělovýchovy České republiky). (2017). Rámcový vzdělávací program pro základní vzdělávání. Praha: MŠMT ČR. Available at http://www.msmt.cz/file/43792/

OECD. (2016). PISA 2015 results (Volume I): Excellence and equity in education. Paris: PISA, OECD Publishing, Paris. https://doi.org/10.1787/9789264266490-en

Osborne, J. & Collins, S. (2001). Pupils’ views of the role and value of the science curriculum: A focus-group study. International Journal of Science Education, 23(5), 441–467. https://doi.org/10.1080/09500690010006518

Osborne, J., Simon, S. & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25(9), 1049–1079. https://doi.org/10.1080/0950069032000032199

Papáček, M. (2010). Badatelsky orientované přírodovědné vyučování – cesta pro vzdělávání generací Y, Z a alfa? Scientia in educatione, 1(1), 33–49.

Park, M., Park, D.Y. & Lee, R.E. (2009). A comparative analysis of Earth science curriculum using inquiry methodology between Korean and the US textbooks. Eurasia Journal of Mathematics, Science & Technology Education, 5(4), 395–411. https://doi.org/10.29333/ejmste/108533

Pawilen, G. & Sumida, M. (2005). A comparative analysis of the elementary science curriculum of Philippines and Japan. Bulletin of the Faculty of Education Ehime University, 52(1), 167–180.

Poupová, J. (2018). Výuka o vědě a jejích dějinách: Česko versus Západ. Orbis scholae, 12(1), 1–17. https://doi.org/10.14712/23363177.2018.281

Prokop, P. & Fančovičová, J. (2017). The effect of hands-on activities on children’s knowledge and disgust for animals. Journal of Biological Education, 51(3), 305–314. https://doi.org/10.1080/00219266.2016.1217910

Prokop, P., Prokop, M. & Tunnicliffe, S.D. (2007). Is biology boring? Student attitudes toward biology. Journal of Biological Education, 42(1), 36–39. https://doi.org/10.1080/00219266.2007.9656105

Radvanová, S., Čížková, V. & Martinková, P. (2018). Mění se pohled učitelů na badatelsky orientovanou výuku? Scientia in educatione, 9(1), 81–103.

Randler, C., Hummel, E. & Prokop, P. (2012). Practical work at school reduces disgust and fear of unpopular animals. Society & Animals, 20(1), 61–74. https://doi.org/10.1163/156853012X614369

Rennie, L. J., Goodrum, D. & Hackling, M. (2001). Science teaching and learning in Australian schools: Results of a national study. Research in Science Education, 31(4), 455–498. https://doi.org/10.1023/A:1013171905815

Russell, C. B. & Weaver, G.C. (2011). A comparative study of traditional, inquiry-based, and research-based laboratory curricula: impacts on understanding of the nature of science. Chemistry Education Research and Practice, 12(1), 57–67. https://doi.org/10.1039/C1RP90008K

Schmidt, H., Machiels-Bongaerts, M., Hermans, H.H., Ten Cate, O., Venekamp, R. & Boshuizen, H.H. (1996). The development of diagnostic competence: comparison of a problem-based, an integrated and a conventional medical curriculum. Academic Medicine, 71(6), 658–664.

Shirazi, S. (2017). Student experience of school science. International Journal of Science Education, 39(14), 1891–1912. https://doi.org/10.1080/09500693.2017.1356943

da Silva, C. S. D. S., Prochnow, T.R. & Pellegrini, G. (2018). Z Generation youth and interest in science. Acta Scientiae, 20(6), 1056–1070. https://doi.org/10.17648/acta.scientiae.v20iss6id4775

Stohr-Hunt, P.M. (1996). An analysis of frequency of hands-on experience and science achievement. Journal of Research in Science Teaching, 33(1), 101–109. https://doi.org/10.1002/(SICI)1098-2736(199601)33:1%3C101::AID-TEA6%3E3.0.CO;2-Z

Straková, J. (2013). Jak dál s kurikulární reformou. Pedagogická orientace, 23(5), 734–744. https://doi.org/10.5817/PedOr2013-5-734

Su, Z., Su, J. & Goldstein, S. (1994). Teaching and learning science in American and Chinese high schools: A comparative study. Comparative Education, 30(3), 255–270.

Su, Z., Su, J. & Goldstein, S. (1995). Science education goals and curriculum designs in American and Chinese high schools. International Review of Education, 41(5), 371–388. https://doi.org/10.1007/BF01103035

Škoda, J. & Doulík, P. (2009). Vývoj paradigmat přírodovědného vzdělávání. Pedagogická orientace, 19(3), 24–44.

ŠPÚ (Štátny pedagogický ústav). (2015). Štátny vzdelávací program. Nižšie stredné vzdelávanie – 2. stupeň základnej školy. Appendix Biológia. Bratislava: Štátny pedagogický ústav.

Šorgo, A. (2012). Scientific creativity: The missing ingredient in Slovenian science education. European Journal of Educational Research, 1(2), 127–141. https://doi.org/10.12973/eu-jer.1.2.127

Šorgo, A. & Špernjak, A. (2009). Secondary school students’ perspectives on and attitudes towards laboratory work in biology. Problems of Education in the 21st Century, 14, 123–134.

Šorgo, A. & Špernjak, A. (2012). Practical work in biology, chemistry and physics at lower secondary and general upper secondary schools in Slovenia. Eurasia Journal of Mathematics, Science & Technology Education, 8(1), 11–019. https://doi.org/10.12973/eurasia.2012.813a

Štech, S. (2013). Když je kurikulární reforma evidence-less. Pedagogická orientace, 23(5), 615–633. https://doi.org/10.5817/PedOr2013-5-615

The Government of Hungary. (2014). The government’s decree on the issue, introduction and implementation of the national core curriculum. Magyar Kölöny (official journal of Hungary). Available at http://regi.ofi.hu/download.php?docID=5846

Uitto, A. & Kärnä, P. (2014). Teaching methods enhancing grade nine students’ performance and attitudes towards biology. In C.P. Constantinou, N. Papadouris & A. Hadjigeorgiou (Eds.), E-Book Proceedings of the ESERA 2013 Conference: Science education research for evidence-based teaching and coherence in learning (315–321). Nicosia, Cyprus: European Science Education Research Association.

van den Berg, E. (2013). The PCK of laboratory teaching: Turning manipulation of equipment into manipulation of ideas. Scientia in educatione, 4(2), 74–92.

Vařejka, P. (2006). Kabinet pro modernizaci výuky biologie? – Proč ne! Biologie Chemie Zeměpis, 15(5), 231.

White Wolf Consulting. (2009). Důvody nezájmu žáků o přírodovědné a technické obory. Výzkumná zpráva. Available at http://vzdelavani.unas.cz/duvody nezajmu obory.pdf

Zembylas, M. (2002) The global, the local, and the science curriculum: A struggle for balance in Cyprus. International Journal of Science Education, 24(5), 499–519. https://doi.org/10.1080/09500690110095267

Žoldošová, K. & Prokop, P. (2006). Education in the field influences children’s ideas and interest toward science. Journal of Science Education and Technology, 15(3–4), 304–313. https://doi.org/10.1007/s10956-006-9017-3