Možnosti využitia poznania neurovied v teórii fyzikálneho vzdelávania

##plugins.themes.healthSciences.article.supplementaryFiles##

finalni sazba - pdf

Klíčová slova

neurovedy vo vzdelávaní
myslenie
fyzikálne vzdelávanie
vedy o učení sa neurosciences in education
mind
physics education
the learning sciences

Jak citovat

Červeňová, D., & Demkanin, P. (2023). Možnosti využitia poznania neurovied v teórii fyzikálneho vzdelávania. Scientia in Educatione, 14(2), 20-31. https://doi.org/10.14712/18047106.3108

Abstrakt

V 20. storočí teóriu vyučovania fyziky, podobne ako iné odborové didaktiky, významným spôsobom ovplyvnili výsledky práce empirických psychológov. Takmer určite každý učiteľ pozná mená ako Piaget, Bruner, Maslow a každý učiteľ pozná Bloomovu taxonómiu. V súčasnosti začína byť celkom zrejmé, že časť teoretického pozadia procesov dejúcich sa v rámci učenia sa fyziky sa presúva do novej oblasti nazývanej neurovedy, vedy o učení sa, vedy nazývanej aj veda o myslení, mozgu a učení sa. Tímy neurovedcov vybavené kvalitnými medicínskymi zobrazovacími metódami pátrajú po tom, v ktorých častiach mozgu prebiehajú ktoré operácie, ako tieto časti navzájom spolupracujú a ako možno vysvetliť, spresniť a doplniť zistenia psychológov 20. storočia. Prípadne upozorňujú na závery, ktoré sa javia ako nepodložené. Príspevok podrobne rozpracúva jednu z teórií súvisiacu s fungovaním našej mysle. Teória klasifikuje spôsoby uvažovania do piatich kategórií, symboly, vzory, usporiadania, kategórie a vzťahy. Pilotné vedomé používanie týchto kategórií vo fyzikálnom vzdelávaní sa javí ako sľubné a zdá sa, že má potenciál ho skvalitniť prostredníctvom zapracovania do učebníc, ako aj do práce učiteľa.

https://doi.org/10.14712/18047106.3108

Reference

Bowers, J. S. (2016). The practical and principled problems with educational neuroscience. Psychological Review, 123(5), 600–612. https://pubmed.ncbi.nlm.nih.gov/26938449/

Carew, T., & Magsamen, S. (2010). Neuroscience and education: An ideal partnership for producing evidence-based solutions to guid 21st century learning. Neuron, 67(5), 685–688. https://doi.org/10.1016/j.neuron.2010.08.028

Clement, N., & Lovat, T. (2012). Neuroscience and education: Issues and challenges for curriculum. Curriculum Inquiry, 42(4), 534–557. https://doi.org/10.1111/j.1467-873X.2012.00602.x

Červeňová, D. (2022). Aplikácia teórie piatich pilierov mysle v kontexte naklonenej roviny [Bakalárska práca, Univerzita Komenského] https://opac.crzp.sk/?fn=detailBiblioForm&sid=CCC58BA4FA4903AAF32D52375785

Demkanin, P. (2021). Žiacke bádanie vo vyučovaní fyziky a paródia na bádanie – hľadanie hraníc. In M. Kireš (Ed.), Tvorivý učiteľ fyziky XII (s. 25–30). Slovenská fyzikálna spoločnosť. https://conf.ccvapp.upjs.sk/tuf/pages/archiv/tvorivy-ucitel-fyziky-xii/prispevky/

Demkanin, P. (2019). Skefolding budúceho učiteľa fyziky v rámci predmetu Didaktika fyziky. In B. Jaslovská & E. Tóblová (Eds.), Súčasnosť a perspektívy pregraduálnej prípravy učiteľov (s. 6–12). Univerzita Komenského. https://www.researchgate.net/publication/339022767

Demkanin, P. (2018). Didaktika fyziky pre študentov magisterského štúdia a učiteľov v praxi. Univerzita Komenského. https://www.researchgate.net/publication/328614725

Demkanin, P., & Kováč, M. (2019). Effective individual work of pupils within physics education in the light of the learning sciences. AIP Conference Proceedings 2152, 020002. https://doi.org/10.1063/1.5124742

Donoghue, G.M., & Horvath, J.C. (2016). Translating neuroscience, psychology and education: An abstracted conceptual framework for the learning sciences, Cogent Education, 3(1), 1267422. https://doi.org/10.1080/2331186X.2016.1267422

diSessa, A. (2014). The construction of causal schemes: Learning mechanisms at the knowledge level. Cognitive Science, 28, 795–850. https://doi.org/10.1111/cogs.12131

diSessa, A. (2018). A friendly introduction to “knowledge in pieces”: Modeling types of knowledge and their roles in learning. In G. Kaiser, H. Forgasz, M. Graven, A. Kuzniak, E. Simmt, & B. Xu (Eds.), Invited Lectures from the 13th International Congress on Mathematical Education (pp. 65–84). Springer. https://doi.org/10.1007/978-3-319-72170-5 5

diSessa (1983). Phenomenology and the evolution of intuition. In D. Gentner & A. Stevens (Eds.), Mental models (pp. 15–33). Etlbaum Associates. https://doi.org/10.4324/9781315802725

Elouafi, L., Lotfi, S., & Talbi, M. (2021). Progress report in neuroscience and education: Experiment of four neuropedagogical methods. Education Sciences, 11(8), 373. https://doi.org/10.3390/educsci11080373

Fynes-Clinton, S., Sherwell, C., Ziaei, M., York, S., O’Connor, E. S., Forrest, K., Flynn, L., Bower, J., Reutens, D., & Carroll, A. (2022). Neural activation during emotional interference corresponds to emotion dysregulation in stressed teachers. Npj Science of Learning, 7(5). https://doi.org/10.1038/s41539-022-00123-0

Gkintoni, E., & Dimakos, I. (2022). An overview of cognitive neuroscience in education. In 14th International Conference on Education and New Learning Technologies, 5698–5707. https://doi.org/10.21125/edulearn.2022.1343

Hejny, M., Jirotkova, D., & Kratochvilova, J. (2006). Early conceptual thinking. In PME 30: Proceedings of the 30th conference of the international group for the psychology of mathematics education (pp. 289–296). Charles University in Prague, Faculty of Education. https://files.eric.ed.gov/fulltext/ED496933.pdf

Immordino-Yang, M. (2011). Implication of affective and social neuroscience for eudational theory. Educational Philosophy and Theory, 43(1), 98–103. https://doi.org/10.1111/j.1469-5812.2010.00713.x

Kvasz, L. (2019). How can abstract objects of mathematics be known? Philosophia Mathematica, 27(3), 316-334. https://doi.org/10.1093/philmat/nkz011

Lomba-Portela, L., Domínguez-Lloria, S., & Pino-Juste, M.R. (2022). Resistances to educational change: Teachers’ perceptions. Education Sciences, 12(5), 359. https://doi.org/10.3390/educsci12050359

Mason, R.A., Schumacher, R.A., & Just, M.A. (2021). The neuroscience of advanced scientific concepts. Npj Science of Learning, 6(29). https://doi.org/10.1038/s41539-021-00107-6

Melby-Lerv˚ag, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270–291. https://pubmed.ncbi.nlm.nih.gov/22612437/

Merzanich, M. (2013). Soft-wired: How the new science of brain plasticity can change your life. Parnassus Publishing.

Nouri, A., Tokuhama-Espinosa, T., & Borja, C. (2023). Crossing mind, brain, and education boundaries. Cambridge scholars publishing.

O’Connor, J. & Lages, A. (2019). Coaching the brain. Routledge.

Owens, M., & Tanner, K. (2017). Teaching as brain changing: Exploring connections between neuroscience and innovative teaching. CBE-Life Sciences Education, 16(2). https://doi.org/10.1187/cbe.17-01-0005

Petty, G. (2014). Teaching today (5th ed.). Oxford University Press.

Puntambekar, S. (2021). Distributed scaffolding: Scaffolding students in cassroom environments. Educational Psychology Review, 34, 451–472. https://doi.org/10.1007/s10648-021-09636-3

Redick, T. S., Shipstead, Z., Harrison, T. L., Kenny, L., Hicks, K. L., Fried, D.E., David, Z., Hambrick, D. Z., Michael, J., Kane, M. J., & Engle, R.W. (2013). No evidence of intelligence improvement after working memory training: A randomized, placebo-controlled study. Journal of Experimental Psychology: General, 142(2), 359–379. https://pubmed.ncbi.nlm.nih.gov/22708717

Renouard, A., & Mazabraud, Y. (2018). Context-based learning for inhibition of alternative conceptions: The next step forward in science education. Npj Science of Learning, 3(1). https://doi.org/10.1038/s41539-018-0026-9

Sawyer, R.K. (2014). The Cambridge handbook of the learning sciences (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781139519526

Shahbari, J.A. (2020). Mathematical thinking styles and the features of modeling process. Scientia in educatione, 11(1), 59–68. https://doi.org/10.14712/18047106.1579

Sirois, S., Spratling, M., Thomas, M. S., Westermann, G., Mareschal, D., & Johnson, M.H. (2008). Precis of neuroconstructivism: How the brain constructs cognition. Behaviorial and Brain Sciences, 31(03), 321–331. https://doi.org/10.1017/S0140525X0800407X

Tokuhama-Espinosa, T. (2019). Five pillars of the mind. W.W. Norton. https://wwnorton.com/books/9780393713213

Tokuhama-Espinosa, T., & Borja, C. (2023). Radical neuroconstructivism: A framework to combine the how and what of teaching and learning? Froniers in Education, 8:1215510. https://doi.org/10.3389/feduc.2023.1215510

Tokuhama-Espinosa, T. (2021). Bringing the neuroscience of learning to online teaching. Teachers College Press. https://www.tcpress.com/bringing-the-neuroscience-of-learning-to-online-teaching-9780807765524

Van de Pol, J., Vomlan, M., & Beishuizen, J. (2010). Scaffolding in teacher-student interaction: A decade of research. Educational Psychology Review, 22, 271–296. https://doi.org/10.1007/s10648-010-9127-6

Westermann, G., Mareschal, D., Johnson, M.H., Sirois, S., Michael, W., Spratling, M.W., & Thomas, M. S.C. (2007). Neuroconstructivism. Developmental Science, 10(1), 71–83. https://doi.org/10.1111/j.1467-7687.2007.00567.x

Zenkl, D. (2021). Presentation of combinatorial concepts in mathematics textbooks and its compliance with a concept development theory. Scientia in educatione, 12(1), 37–52. https://doi.org/10.14712/18047106.1938