Opportunities for the use of neuroscience knowledge in the theory of physics education

Supplementary Files

finalni sazba - pdf (Čeština)

Keywords

neurovedy vo vzdelávaní
myslenie
fyzikálne vzdelávanie
vedy o učení sa neurosciences in education
mind
physics education
the learning sciences

How to Cite

Červeňová, D., & Demkanin, P. (2023). Opportunities for the use of neuroscience knowledge in the theory of physics education. Scientia in Educatione, 14(2), 20-31. https://doi.org/10.14712/18047106.3108

Abstract

In the 20th century, the theory of physics education, like other subject didactics, was significantly influenced by results of the empirical work of psychologists. Certainly, almost every teacher knows names like Piaget, Bruner, Maslow, and every teacher knows Bloom’s taxonomy. Nowadays, it is becoming quite obvious that the theoretical background of the processes taking place while learning physics is moving into the new field called neuroscience, the science of learning, sometimes called the science of mind, brain and education. Teams of neuroscientists equipped with high-quality medical imaging methods seek for the parts of the brain that are undergoing certain operations, how these parts cooperate with each other, and how the findings of psychologists of the 20th century can be explained and refined, or they draw attention to conclusions that appear to be unfounded. This paper elaborates on one of the hypotheses about how our mind works. The hypothesis classifies ways of thinking into five categories, symbols, patterns, ordering, categories, and relationships. Piloting the conscious use of these categories in physics education appears promising and seems to have the potential to improve it through incorporation into textbooks as well as teachers daily work.

https://doi.org/10.14712/18047106.3108

References

Bowers, J. S. (2016). The practical and principled problems with educational neuroscience. Psychological Review, 123(5), 600–612. https://pubmed.ncbi.nlm.nih.gov/26938449/

Carew, T., & Magsamen, S. (2010). Neuroscience and education: An ideal partnership for producing evidence-based solutions to guid 21st century learning. Neuron, 67(5), 685–688. https://doi.org/10.1016/j.neuron.2010.08.028

Clement, N., & Lovat, T. (2012). Neuroscience and education: Issues and challenges for curriculum. Curriculum Inquiry, 42(4), 534–557. https://doi.org/10.1111/j.1467-873X.2012.00602.x

Červeňová, D. (2022). Aplikácia teórie piatich pilierov mysle v kontexte naklonenej roviny [Bakalárska práca, Univerzita Komenského] https://opac.crzp.sk/?fn=detailBiblioForm&sid=CCC58BA4FA4903AAF32D52375785

Demkanin, P. (2021). Žiacke bádanie vo vyučovaní fyziky a paródia na bádanie – hľadanie hraníc. In M. Kireš (Ed.), Tvorivý učiteľ fyziky XII (s. 25–30). Slovenská fyzikálna spoločnosť. https://conf.ccvapp.upjs.sk/tuf/pages/archiv/tvorivy-ucitel-fyziky-xii/prispevky/

Demkanin, P. (2019). Skefolding budúceho učiteľa fyziky v rámci predmetu Didaktika fyziky. In B. Jaslovská & E. Tóblová (Eds.), Súčasnosť a perspektívy pregraduálnej prípravy učiteľov (s. 6–12). Univerzita Komenského. https://www.researchgate.net/publication/339022767

Demkanin, P. (2018). Didaktika fyziky pre študentov magisterského štúdia a učiteľov v praxi. Univerzita Komenského. https://www.researchgate.net/publication/328614725

Demkanin, P., & Kováč, M. (2019). Effective individual work of pupils within physics education in the light of the learning sciences. AIP Conference Proceedings 2152, 020002. https://doi.org/10.1063/1.5124742

Donoghue, G.M., & Horvath, J.C. (2016). Translating neuroscience, psychology and education: An abstracted conceptual framework for the learning sciences, Cogent Education, 3(1), 1267422. https://doi.org/10.1080/2331186X.2016.1267422

diSessa, A. (2014). The construction of causal schemes: Learning mechanisms at the knowledge level. Cognitive Science, 28, 795–850. https://doi.org/10.1111/cogs.12131

diSessa, A. (2018). A friendly introduction to “knowledge in pieces”: Modeling types of knowledge and their roles in learning. In G. Kaiser, H. Forgasz, M. Graven, A. Kuzniak, E. Simmt, & B. Xu (Eds.), Invited Lectures from the 13th International Congress on Mathematical Education (pp. 65–84). Springer. https://doi.org/10.1007/978-3-319-72170-5 5

diSessa (1983). Phenomenology and the evolution of intuition. In D. Gentner & A. Stevens (Eds.), Mental models (pp. 15–33). Etlbaum Associates. https://doi.org/10.4324/9781315802725

Elouafi, L., Lotfi, S., & Talbi, M. (2021). Progress report in neuroscience and education: Experiment of four neuropedagogical methods. Education Sciences, 11(8), 373. https://doi.org/10.3390/educsci11080373

Fynes-Clinton, S., Sherwell, C., Ziaei, M., York, S., O’Connor, E. S., Forrest, K., Flynn, L., Bower, J., Reutens, D., & Carroll, A. (2022). Neural activation during emotional interference corresponds to emotion dysregulation in stressed teachers. Npj Science of Learning, 7(5). https://doi.org/10.1038/s41539-022-00123-0

Gkintoni, E., & Dimakos, I. (2022). An overview of cognitive neuroscience in education. In 14th International Conference on Education and New Learning Technologies, 5698–5707. https://doi.org/10.21125/edulearn.2022.1343

Hejny, M., Jirotkova, D., & Kratochvilova, J. (2006). Early conceptual thinking. In PME 30: Proceedings of the 30th conference of the international group for the psychology of mathematics education (pp. 289–296). Charles University in Prague, Faculty of Education. https://files.eric.ed.gov/fulltext/ED496933.pdf

Immordino-Yang, M. (2011). Implication of affective and social neuroscience for eudational theory. Educational Philosophy and Theory, 43(1), 98–103. https://doi.org/10.1111/j.1469-5812.2010.00713.x

Kvasz, L. (2019). How can abstract objects of mathematics be known? Philosophia Mathematica, 27(3), 316-334. https://doi.org/10.1093/philmat/nkz011

Lomba-Portela, L., Domínguez-Lloria, S., & Pino-Juste, M.R. (2022). Resistances to educational change: Teachers’ perceptions. Education Sciences, 12(5), 359. https://doi.org/10.3390/educsci12050359

Mason, R.A., Schumacher, R.A., & Just, M.A. (2021). The neuroscience of advanced scientific concepts. Npj Science of Learning, 6(29). https://doi.org/10.1038/s41539-021-00107-6

Melby-Lerv˚ag, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270–291. https://pubmed.ncbi.nlm.nih.gov/22612437/

Merzanich, M. (2013). Soft-wired: How the new science of brain plasticity can change your life. Parnassus Publishing.

Nouri, A., Tokuhama-Espinosa, T., & Borja, C. (2023). Crossing mind, brain, and education boundaries. Cambridge scholars publishing.

O’Connor, J. & Lages, A. (2019). Coaching the brain. Routledge.

Owens, M., & Tanner, K. (2017). Teaching as brain changing: Exploring connections between neuroscience and innovative teaching. CBE-Life Sciences Education, 16(2). https://doi.org/10.1187/cbe.17-01-0005

Petty, G. (2014). Teaching today (5th ed.). Oxford University Press.

Puntambekar, S. (2021). Distributed scaffolding: Scaffolding students in cassroom environments. Educational Psychology Review, 34, 451–472. https://doi.org/10.1007/s10648-021-09636-3

Redick, T. S., Shipstead, Z., Harrison, T. L., Kenny, L., Hicks, K. L., Fried, D.E., David, Z., Hambrick, D. Z., Michael, J., Kane, M. J., & Engle, R.W. (2013). No evidence of intelligence improvement after working memory training: A randomized, placebo-controlled study. Journal of Experimental Psychology: General, 142(2), 359–379. https://pubmed.ncbi.nlm.nih.gov/22708717

Renouard, A., & Mazabraud, Y. (2018). Context-based learning for inhibition of alternative conceptions: The next step forward in science education. Npj Science of Learning, 3(1). https://doi.org/10.1038/s41539-018-0026-9

Sawyer, R.K. (2014). The Cambridge handbook of the learning sciences (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781139519526

Shahbari, J.A. (2020). Mathematical thinking styles and the features of modeling process. Scientia in educatione, 11(1), 59–68. https://doi.org/10.14712/18047106.1579

Sirois, S., Spratling, M., Thomas, M. S., Westermann, G., Mareschal, D., & Johnson, M.H. (2008). Precis of neuroconstructivism: How the brain constructs cognition. Behaviorial and Brain Sciences, 31(03), 321–331. https://doi.org/10.1017/S0140525X0800407X

Tokuhama-Espinosa, T. (2019). Five pillars of the mind. W.W. Norton. https://wwnorton.com/books/9780393713213

Tokuhama-Espinosa, T., & Borja, C. (2023). Radical neuroconstructivism: A framework to combine the how and what of teaching and learning? Froniers in Education, 8:1215510. https://doi.org/10.3389/feduc.2023.1215510

Tokuhama-Espinosa, T. (2021). Bringing the neuroscience of learning to online teaching. Teachers College Press. https://www.tcpress.com/bringing-the-neuroscience-of-learning-to-online-teaching-9780807765524

Van de Pol, J., Vomlan, M., & Beishuizen, J. (2010). Scaffolding in teacher-student interaction: A decade of research. Educational Psychology Review, 22, 271–296. https://doi.org/10.1007/s10648-010-9127-6

Westermann, G., Mareschal, D., Johnson, M.H., Sirois, S., Michael, W., Spratling, M.W., & Thomas, M. S.C. (2007). Neuroconstructivism. Developmental Science, 10(1), 71–83. https://doi.org/10.1111/j.1467-7687.2007.00567.x

Zenkl, D. (2021). Presentation of combinatorial concepts in mathematics textbooks and its compliance with a concept development theory. Scientia in educatione, 12(1), 37–52. https://doi.org/10.14712/18047106.1938