Data Collection Methods in Didactics of Physics in the International Environment
PDF (Čeština)

How to Cite

Žák, V. (2016). Data Collection Methods in Didactics of Physics in the International Environment. Scientia in Educatione, 7(2), 18-33. https://doi.org/10.14712/18047106.349

Abstract

The strategic goal of the research, which also includes this systematic review, is to reï¬ect the development and current situation in the field of physics education research (hereafter referred to as PER). The purpose of the review is to present an outline of data collection methods and to foster discussion about research methods used in this field. Qualitative approach was used to deal with the research problem, complemented by the content analysis of research studies as a data collection method. The SCOPUS database was chosen as a source of the analysed texts, yet the analysis was limited only to relevant journal articles, 146 in total, published in English between 2010 and 2014. The data collection methods used in PER include questionnaires, interviews, and achievement tests (which are predominantly conceptual). Furthermore, there are analyses of various documents, observations, or other methods. A benefit for further research in the field of PER, both on the local or international level, may be the fact that standardised research methods are used in the international environment, particularly conceptual tests and questionnaires. This study abstracts away, to a certain extent, from the realm of physics. This is why the presented findings may be beneficial also for other researchers in the field of science education.
https://doi.org/10.14712/18047106.349
PDF (Čeština)

References

Buck, G. A., Mills, M., Wang, J. & Yin, X. (2014). Evaluating and exploring a professional conference for undergraduate women in physics: Can one weekend make a difference? Journal of Women and Minorities in Science and Engineering, 20(4), 359–377.

Candela, A. (2013). Dialogue between cultures in Tzeltal teachers’ cultural discourse: Co-construction of an intercultural proposal for science education. Journal of Multicultural Discourses, 8(2), 93–112.

Chasteen, S. V., Pollock, S. J., Pepper, R. E. & Perkins, K. K. (2012). Thinking like a physicist: A multi-semester case study of junior-level electricity and magnetism. American Journal of Physics, 80(10), 923–930.

Choi, S. H.-J., Nieminen, T. A. & Townson, P. (2012). Factors inï¬uencing international PhD students to study physics in Australia. Innovations in Education and Teaching International, 49(3), 309–318.

Colclough, N. D., Lock, R. & Soares, A. (2011). Pre-service teachers’ subject knowledge of and attitudes about radioactivity and ionising radiation. International Journal of Science Education, 33(3), 423–446.

Crowl, M., Devitt, A., Jansen, H., van Zee, E. H. & Winograd, K. J. (2013). Encouraging prospective teachers to engage friends and family in exploring physical phenomena. Journal of Science Teacher Education, 24(1), 93–110.

Danielsson, A. T. (2012). Exploring woman university physics students ‘doing gender’ and ‘doing physics’. Gender and Education, 24(1), 25–39.

Docktor, J. L. & Mestre, J. P. (2014). Synthesis of discipline-based education research in physics. Physical Review Special Topics – Physics Education Research, 10(2), 1–58.

Dvořák, L., Kekule, M. & Žák, V. (2012). Výzkum v oblasti fyzikálního vzdělávání – co, proč a jak. Československý časopis pro fyziku, 62(5–6), 325–330.

Dvořák, L., Kekule, M. & Žák, V. (2015). Didaktika fyziky včera, dnes a zítra. In I. Stuchlíková & T. Janík (Eds.), Oborové didaktiky: vývoj – stav – perspektivy (123–157). Brno: Masarykova univerzita.

Dzikovska, M., Steinhauser, N., Farrow, E., Moore, J. & Campbell, G. (2014). BEETLE II: Deep natural language understanding and automatic feedback generation for intelligent tutoring in basic electricity and electronics. International Journal of Artificial Intelligence in Education, 24(3), 284–332.

Emdin, C. (2011). Dimensions of communication in urban science education: Interactions and transactions. Science Education, 95(1), 1–20.

Enderle, P. J., Southerland, S. A. & Grooms, J. A. (2013). Exploring the context of change: Understanding the kinetics of a studio physics implementation effort. Physical Review Special Topics – Physics Education Research, 9(1), 1–18.

Eren, C. D. & Akinoglu, O. (2013). Effect of problem-based learning (PBL) on critical thinking disposition in science education. Journal of Environmental Protection and Ecology, 14(3A), 1353–1361.

Fenclová, J. (1982). Úvod do teorie a metodologie didaktiky fyziky. Praha: Státní pedagogické nakladatelství.

Fraser, J. B., McRobbie, C. J. & Tobin, K. G. (Eds.). (2012). Second international handbook of science education. Dordrecht: Springer.

Gok, T. (2013). A comparison of students’ performance, skill and confidence with peer instruction and formal education. Journal of Baltic Science Education, 12(6), 747–758.

Kanli, U. (2014). A study on identifying the misconceptions of pre-service and in-service teachers about basic astronomy concepts. Eurasia Journal of Mathematics, Science and Technology Education, 10(5), 471–479.

Karam, R. (2014). Framing the structural role of mathematics in physics lectures: A case study on electromagnetism. Physical Review Special Topics – Physics Education Research, 10(1), 1–23.

Kili¸c, H. E. & S¸en, A. I. (2014). The effect of physics education based on out-of-school learning activities and critical thinking on students’ attitudes. EËgitim ve Bilim, 39(176), 13–30.

Kock, Z.-J., Taconis, R., Bolhuis, S. & Gravemeijer, K. (2013). Some key issues in creating inquiry-based instructional practices that aim at the understanding of simple electric circuits. Research in Science Education, 43(2), 579–597.

Korpershoek, H., Kuyper, H., Werf, G. V. D. & Bosker, R. (2010). Who ‘fits’ the science and technology profile? Personality differences in secondary education. Journal of Research in Personality, 44(5), 649–654.

Mandíková, D. & Trna, J. (2011). Žákovské prekoncepce ve výuce fyziky. Brno: Paido.

Markic, S. & Eilks, I. (2012). A comparison of student teachers’ beliefs from four different science teaching domains using a mixed methods design. International Journal of Science Education, 34(4), 589–608.

Morris, G. A., Harshman, N., Branum-Martin, L., Mazur, E., Mzoughi, T. & Baker, S. D. (2012). An item response curves analysis of the Force Concept Inventory. American Journal of Physics, 80(10), 923–930.

Neumann, S. (2014). What students think about (nuclear) radiation – before and after Fukushima. Nuclear Data Sheets, 120, 166–168.

Nezvalová, D. (2011). Didaktika fyziky v České republice: trendy, výzvy a perspektivy. Pedagogická orientace, 21(2), 171–192.

Nieminen, P., Savinainen, A. & Viiri, J. (2012). Relations between representational consistency, conceptual understanding of the force concept, and scientific reasoning. Physical Review Special Topics – Physics Education Research, 8(1), 1–10.

Otero, V., Pollock, S. & Finkelstein, N. (2010). A physics department’s role in preparing physics teachers: The Colorado learning assistant model. American Journal of Physics, 78(11), 1218–1224.

Pavlasová, L. (2015). Disertační práce se zaměřením na didaktiku biologie v České republice v letech 2004–2013. Scientia in educatione, 6(2), 4–15.

Rudolph, A. L., Lamine, B., Joyce, M., Vignolles, H. & Consiglio, D. (2014). Introduction of interactive learning into French university physics classrooms. Physical Review Special Topics – Physics Education Research, 10(1), 1–18.

Rusek, M. (2015). Analýza disertačních prací z didaktiky chemie obhájených v letech 2003–2014. Scientia in educatione, 6(2), 16–34.

Saleh, S. (2012). The effectiveness of brain-based teaching approach in dealing with the problems of students’ conceptual understanding and learning motivation towards physics. Educational Studies, 38(1), 19–29.

Sardag, M., Aydin, S., Kalender, N., Tortumlu, S., Ciftci,M. & Perihanoglu, S. (2014). The integration of nature of science in the new secondary physics, chemistry and biology curricula. EËgitim ve Bilim, 39(174), 233–248.

Sawtelle, V., Brewe, E. & Kramer, L. H. (2012). Exploring the relationship between self-eï¬cacy and retention in introductory physics. Journal of Research in Science Teaching, 49(9), 1096–1121.

Sharma, S., Ahluwalia, P. K. & Sharma, S. K. (2013). Students’ epistemological beliefs, expectations, and learning physics: An international comparison. Physical Review Special Topics – Physics Education Research, 9(1), 1–13.

Simon, J. & Cuenca-Lorente, M. (2012). Science education and the material culture of the nineteenth-century classroom: Physics and chemistry in Spanish secondary schools. Science and Education, 21(2), 227–244.

Strauss, A. & Corbinová, J. (1999). Základy kvalitativního výzkumu. Boskovice: Albert.

Stuchlíková, I. & Janík, T. (Eds.). (2011). Oborové didaktiky: bilance a perspektivy [Monotematické číslo]. Pedagogická orientace, 21(2).

Stuchlíková, I. & Janík, T. et al. (2015). Oborové didaktiky: vývoj – stav – perspektivy. Brno: Masarykova univerzita.

Thacker, B., Dulli, H., Pattillo, D. & West, K. (2014). Lessons from a large-scale assessment: Results from conceptual inventories. Physical Review Special Topics – Physics Education Research, 10(2), 1–13.

Tongchai, A., Sharma, M. D., Johnston, I. D., Arayathanitkul, K. & Soankwan, C. (2011). Consistency of students’ conceptions of wave propagation: Findings from a conceptual survey in mechanical waves. Physical Review Special Topics – Physics Education Research, 7(2), 1–11.

von Aufschnaiter, C. & Rogge, C. (2010). Misconceptions or missing conceptions? Eurasia Journal of Mathematics, Science and Technology Education, 6(1), 3–18.

Wattanakasiwich, P., Taleab, P., Sharma, M. D. & Johnston, I. D. (2013). Development and implementation of a conceptual survey in thermodynamics. International Journal of Innovation in Science and Mathematics Education, 21(1), 29–53.

Zwickl, B. M., Hirokawa, T., Finkelstein, N. & Lewandowski, H. J. (2014). Epistemology and expectations survey about experimental physics: Development and initial results. Physical Review Special Topics – Physics Education Research, 10(1), 1–14.

Žák, V. (2014). Historický vývoj pojetí didaktiky fyziky v České republice. Pedagogická orientace, 24(2), 222–243.

Žák, V. (2015). Disertační práce z didaktiky fyziky obhájené v České republice v letech 2004 až 2013 – přehled a analýza. Scientia in educatione, 6(2), 35–50.