Analýza obrazových materiálů z tématu chemie elektrolytů ve slovinských učebnicích chemie pro základní školy s využitím vytvořených kritérií kvality
PDF (English)

Jak citovat

Zupanc, N., & Devetak, I. (2021). Analýza obrazových materiálů z tématu chemie elektrolytů ve slovinských učebnicích chemie pro základní školy s využitím vytvořených kritérií kvality. Scientia in Educatione. https://doi.org/10.14712/18047106.1926

Abstrakt

Učebnice jako učební nástroj a prostředek významně přispívá k efektivitě samotného vyučovacího procesu a zároveň podporuje a usnadňuje nezávislé učení. Hlavním účelem tohoto výzkumu bylo vytvořit kritéria kvality, na základě kterých byly hodnoceny učebnice chemie pro základní školy. Tento článek obsahuje analýzu obrazového materiálu použitého v tématu chemie elektrolytů v učebnicích chemie. Pokud jde
o ověřování učebnic ve Slovinsku, neexistují jednotná kritéria. Vypracování kritérií zahrnovalo přehled cílů stanovených v kurikulu pro obor chemie. Kritéria byla
vytvořena pro učebnice používané v 8. a 9. ročníku základní školy (žáci ve věku 13–15 let). Učebnice chemie byly analyzovány ve školním roce 2018/2019. Při ověření kritérií týkajících se učebnicových reprezentací jsou submikroskopické a hybridní reprezentace nejméně běžnými v analyzovaných učebnicích.

https://doi.org/10.14712/18047106.1926
PDF (English)

Reference

Bergqvist, A., & Chang Rundgren, S.N. (2017). The influence of textbooks on teachers’ knowledge of chemical bonding representations relative to students’ difficulties understanding. Research in Science & Technological Education, 35(2), 215–237. https://doi.org/10.1080/02635143.2017.1295934

Bölsterli, K., Wilhelm, M., & Rehm, M. (2014). Empirisch gewichtetes Schulbuchraster für den naturwissenschaftlichen kompetenzorientierten Unterricht. Perspectives in Science – Special Issues Progress in Science Education, 5(1), 3–13. https://doi.org/10.1016/j.pisc.2014.12.011

Carney, R.N., & Levine, R. J. (2002). Pictorial Illustrations Still Improve Students’ Learning from Text. Educational Psychology Review, 14(1), 5–26. https://doi.org/10.1023/A:1013176309260

Cook, M. (2008). Students Comprehension of Science Concepts Depicted in Textbook Ilustrations. Electronic Journal of Science Education, 12(1), 39–54. https://ejrsme.icrsme.com/article/view/7765

Cvirn Pavlin, T., Devetak, I., & Jamšek, S. (2016). Peti element 9, učbenik za kemijo v 9. razredu osnovne šole [Fifth element, chemistry textbook for 9th grade] Rokus Klett.

Davidowitz, B., & Chittleborough, G. (2009). Linking the macroscopic and sub-microscopic levels: diagrams. In J.K. Gilbert & D. Treagust (Eds.), Multiple representations in chemical education (pp. 169–191). Springer https://doi.org/10.1007/978-1-4020-8872-8 9

Demirdö˘gen, B. (2017). Examination of chemical representations in Turkish high school chemistry textbooks. Journal of Baltic Science Education, 16(4), 472–499. http://www.scientiasocialis.lt/jbse/files/pdf/vol16/472-499.Demirdogen JBSE Vol.16 No.4.pdf

Devetak, I., Urbančič, M., Grm, K. S.W., Krnel, D., & Glažar, S.A. (2004). Submicroscopic representations as a tool for evaluating students’ chemical conceptions. Acta Chimica Slovenica, 51(4), 799–814. http://acta-arhiv.chem-soc.si/51/graph/acta-51(4)-GA.htm

Devetak, I., & Glažar, S.A. (2007). Chemistry teachers’ mentoring in Slovenian primary and secondary school. In M. Zuljan & J. Vogrinc (Eds.), Professional inductions of teachers in Europe and elsewhere (pp. 102–115). University of Ljubljana, Faculty of Education https://doi.org/10.13140/2.1.3087.5527

Devetak, I., Vogrinc, J. & Glažar, S.A. (2009a). Assessing 16-year-old students’ understanding of aqueous solution at submicroscopic level. Research Science Education, 39(1), 157–179. https://doi.org/10.1007/s11165-007-9077-2

Devetak, I., Lorber, E.D., Juriševič, M., & Glažar, S.A. (2009b). Comparing Slovenian year 8 and year 9 elementary school pupils’ knowledge of electrolyte chemistry and their intrinsic motivation. Chemistry Education Research and Practice, 10(4), 281–290. https://doi.org/10.1039/B920833J

Devetak, I., Vogrinc, J., & Glažar, S. (2010). States of Matter Explanations in Slovenian Textbooks for Students Aged 6 to 14. International Journal of Environmental and Science Education, 5(2), 217–235. https://files.eric.ed.gov/fulltext/EJ884420.pdf

Devetak, I., & Vogrinc, J. (2013). The criteria for evaluating the quality of the science textbooks. In M. Kihne (Ed), Critical analysis of science textbooks (pp. 3–15). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4168-3 1

Gabel, D. (1999). Improving teaching and learning through chemistry education research: a look to the future. Journal of Chemical Education, 76(4), 548–554 https://doi.org/10.1021/ed076p548

Gkitzia, V., Salta, K., & Tzougraki, C. (2011). Development and application of suitable criteria for the evaluation of chemical representations in school textbooks. Chemistry Education Research and Practice, 12(1), 5–14. https://doi.org/10.1039/C1RP90003J

Hegarty, M., Carpenter, P.A., & Just, M.A. (1991). Diagrams in the comprehension of scientific texts. In R. Barr, M. L. Kamil, P. B. Mosenthal, & P.D. Pearson (Eds.), Handbook of reading research (2nd ed., pp. 641–668). Lawrence Erlbaum Associates, Inc.

Hinze, S.R., Rapp, D.N., Williamson, V.M., Shultz, M. J., Deslongchamps, G., & Williamson, K.C. (2013). Beyond ball-and-stick: Students’ processing of novel STEM visualizations. Learning and Instruction, 26(1), 12–21. https://doi.org/10.1016/j.learninstruc.2012.12.002

Irez, S. (2010). Nature of science as depicted in Turkish biology textbooks. Science Education, 93(3), 422–447. https://doi.org/10.1002/sce.20305

Johnstone, A.H. (1991). Why is science difficult to learn? Things are seldom what they seem, Journal of Computer Assisted Learning, 7(2), 75–83. https://doi.org/10.1111/j.1365-2729.1991.tb00230.x

Johnstone, A.H. (2000). Teaching of chemistry-logical or psychological? Chemistry education Research and Practice, 1(1), 9–15. https://doi.org/10.1039/A9RP90001B

Kapici, H., & Acikalin-Savasci, F. (2015). Examination of visuals about the particulate nature of matter in Turkish middle school science textbooks. Chemistry education Research and Practice, 16(3), 518–536. https://doi.org/10.1039/C5RP00032G

Kovač, M., Kovač Šebart, M., Krek, J., Štefanc, J., & Vidmar, T. (2005). Učbeniki in družba znanja [Textbooks and society of knowledge]. Znanstveni inštitut Filozofske fakultete.

Kozma, R., & Russell, J. (2005). Students becoming chemists: Developing representational competence. In J. Gilbert (Eds.), Visualization in science education (pp. 121–146). Kluwer. https://doi.org/10.1007/1-4020-3613-2 8

Lee, V. (2010). Adaptations and Continuities in the use and design of visual representations in US Middle School Science textbooks. International Journal of Science, 32(8), 1099–1126. https://doi.org/10.1080/09500690903253916

Leivas Pozzer, L., & Roth, W. (2003). Prevalence, function and structure of photographs in high school biology textbooks. Journal of Research in Science Teaching, 40(10), 1089–1114. https://doi.org/10.1002/tea.10122

Marentič Požarnik, B. (2016). Psihologija učenja in pouka: temeljna spoznanja in primeri prakse [School psychology, research and practice], DZS.

Marinč, M. (2010). Analiza trenutno veljavnih slovenskih učbenikov za kemijo v osnovni in srednji šoli (diplomsko delo) [Analysis of current high school chemistry textbooks] [Diploma thesis]. University of Ljubljana, Faculty of Education.

Mayer, R. (2014). Introduction to Multimedia Learning. In R. Mayer (Eds.), The Cambridge Handbook of Multimedia Learning (pp. 1–24). Cambridge University Press. https://doi.org/10.1017/CBO9781139547369.002

Mohammed, F.R., & Kumari, R. (2007). Effective use of textbooks: a neglected aspect of Education in Pakistan. Journal of Education for International Development, 3(1), 1–11.

Mulford, D.R., & Robinson, W.R. (2002). An inventory for alternate conceptions among first-semester general chemistry students. Journal of chemical education, 79(6), 739–744. https://doi.org/10.1021/ed079p739

Nyachwaya, J. M., & Wood, N.B. (2014). Evaluation of chemical representations in physical chemistry textbooks. Chemistry Education Research and Practice, 15(4), 720–728. https://doi.org/10.1039/C4RP00113C

Pedrosa, M.A., & Dias, M.H. (2000). Chemistry textbook approaches to chemical equilibrium and student alternative conceptions. Chemistry Education Research and Practice, 1(2), 227–236. https://doi.org/10.1039/A9RP90024A

Piht, S., Raus, R., Kukk, A., Kerli, M., & Riidak, K. (2013). Students interpretations of the 6th grade science textbook design. Procedia-Social and Behavioural Sciences, 112(1), 861–872. https://doi.org/10.1016/j.sbspro.2014.01.1243

Rusek, M., & Vojíř, K. (2019). Analysis of text difficulty in lower-secondary chemistry textbooks. Chemistry Education Research and Practice, 20(1), 85–94. https://doi.org/10.1039/C8RP00141C

Sagadin, J. (1993). Poglavja iz metodologije pedagoškega raziskovanja [Chapters’ from pedagogical methodology] Zavod Republike Slovenije za šolstvo in šport.

Sanger, M. J., & Greenbowe, T. J. (1999). An analysis of college chemistry textbooks as sources of misconceptions and errors in electrochemistry. Journal of chemical Education, 76(6), 853–859. https://doi.org/10.1021/ed076p853

Shehab, S. S., & BouJaoude, S. (2017). Analysis of the chemical representations in secondary Lebanese chemistry textbooks. International Journal of Science Mathematics Education, 15(5), 797–816. https://doi.org/10.1007/s10763-016-9720-3

Slough, S.W., McTigue, E. M., Kim, S., & Jennings, S.K. (2010). Science textbooks’ use of graphical representation: A descriptive analysis of four sixth grade science texts. Reading Psychology, 31(3), 301–325. https://doi.org/10.1080/02702710903256502

Stern, L., & Roseman, J. (2003). Can Middle-School Science Textbooks help students learn important ideas? Findings from Project 2061’s curriculum evaluation study. Journal of research in science teaching, 41(6), 538–568. https://doi.org/10.1002/tea.20019

Stieff, M., Scopelitis, S., Lira, M. E., & Desutter, D. (2016). Improving representational competence with concrete models. Science Education, 100(2), 344–363. https://doi.org/10.1002/sce.21203

Stull, A.T., Hegarty, M., Dixon, B. L., & Stieff, M. (2012). Representational translation with concrete models in Organic Chemistry. Cognition & Instruction, 30(4), 404–434. https://doi.org/10.1080/07370008.2012.719956

Svetlik, K., Japelj Pavešič, B., Kozina, A., Rožman, M., & Šteblaj, M. (2007). N aravoslovni dosežki Slovenije v raziskavi TIMSS 2007, mednarodna raziskava trendov znanja matematike in naravoslovja [Timss 2007, natural science education results in Slovenia], Pedagoški inštitut.

Šegedin, P. (2000). Understanding of chemical and physical change. In A. Glavič & D. Brodnjak-Vončina (Eds.), Abstracts of the Slovenian chemical days (pp. 451–456). Slovenian Chemical Society.

Taber, K. S. (2013). Revisiting the chemistry triplet: drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chemistry Education Research and Practice, 14(2), 156–168. https://doi.org/10.1039/C3RP00012E

Upahi, J. E., & Ramnarain, U. (2019). Representations of chemical phenomena in secondary school chemistry textbooks. Chemistry Education Research and Practice, 20(1), 146–159. https://doi.org/10.1039/C8RP00191J