Úvod do aproximálního numerického systému

Authors

  • Michala Plassová Dalibor Kučera, Psychological Section, Department of Pedagogy and Psychology, Faculty of Education, University of South Bohemia in České Budějovice
  • Iva Stuchlíková Katedra pedagogiky a psychologie, Pedagogická fakulta, Jihočeská univerzita v Českých Budějovicích, Česká republika
  • Michal Vavrečka

DOI:

https://doi.org/10.14712/23362189.2017.410

Abstract

Abstrakt: V následující přehledové studii se snažíme shrnout základní poznatky o aproximálním numerickém systému (ANS) u člověka. V úvodu se věnujeme vymezení ANS, popisujeme jeho základní principy, mechanismy a neuroanatomickou lokalizaci systému. V další části studie identifkujeme průnik kognitivních funkcí ANS se základními kognitivními funkcemi, jež jsou nutné pro úspěšné zvládnutí školní i předškolní matematiky. Zaměřujeme se primárně na vzájemný vztah mezi ANS a matematickými schopnostmi a prostor věnujeme i kontroverzi, která v současné chvíli panuje v otázkách metodologického uchopení tohoto vztahu. V textu dále uvádíme poznatky z aktuálních studií, jež se pokoušejí o trénink ANS s cílem pozitivně působit na obecné matematické schopnosti. Poslední část patří možnostem využití ANS v pedagogické praxi, včetně zdůraznění klíčových mechanismů pro efektivní zařazení do praktické výuky.

Klíčová slova: aproximální numerický systém, matematické nadání, neuropsychologie, intraparietální sulkus, kognice.

References

Inglis, M., Attridge, N., Batchelor, S., & Gilmore, C. (2011). Non-verbal number acuity correlates with symbolic mathematics achievement: But only in children. Psychonomic Bulletin and Review, 18(6), 1222–1229.

https://doi.org/10.3758/s13423-011-0154-1

Isaacs, E. B., Edmonds, C. J., Lucas, A., & Gadian, D. G. (2001). Calculation difficulties in children of very low birthweight: A neural correlate. Brain, 124(Pt 9): 1701–1707.

https://doi.org/10.1093/brain/124.9.1701

Izard, V., Dehaene-Lambertz, G., & Dehaene, S. (2008). Distinct cerebral pathways for object identity and number in human infants. PLoS Biology, 6, e11.

https://doi.org/10.1371/journal.pbio.0060011

Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 10382–10385.

https://doi.org/10.1073/pnas.0812142106

Kaufman, E. L., Lord, M. W., Reese, T. W, & Volkmann, J. (1949). The discrimination of visual number. American Journal of Psychology, 62(4), 498â525.

https://doi.org/10.2307/1418556

Kaufmann, L., Vogel, S. E., Starke, M., Kremser, C., Schocke, M., & Wood, G. (2009). Developmental dyscalculia: compensatory mechanisms in left intraparietal regions in response to nonsymbolic magnitudes. Behavioral and Brain Functions, 5, 35.

https://doi.org/10.1186/1744-9081-5-35

Knops, A., Thirion, B., Hubbard, E. M., Michel, V., & Dehaene, S. (2009). Recruitment of an area involved in eye movements during mental arithmetic. Science, 324, 1583–1585.

https://doi.org/10.1126/science.1171599

Libertus, M., Feigenson, L., & Halberda, J. (2013). Numerical approximation abilities correlate with and predict informal but not formal mathematics abilities. Journal of Experimental Child Psychology, 116(4), 829–838.

https://doi.org/10.1016/j.jecp.2013.08.003

Libertus, M. E., Odic, D., & Halberda, J. (2012). Intuitive sense of number correlates with math scores on college-entrance examination. Acta Psychologica, 141(3), 373–379.

https://doi.org/10.1016/j.actpsy.2012.09.009

Lewandowsky, M. & Stadelmann, E. (1908). Über einen bemerkenswerten Fall von Hirnblutung und über Rechenstörungen bei Herderkrankung des Gehirns. Journal für Psychologie und Neurologie, 11, 249-265.

Luria, A. R. (1973). The working brain. New York: Basic Books.

Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011a). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child Development, 82(4), 1224–1237.

https://doi.org/10.1111/j.1467-8624.2011.01608.x

Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011b). Preschoolers' precision of the approximate number system predicts later school mathematics performance. PLoS ONE, 6(9), 1–8.

https://doi.org/10.1371/journal.pone.0023749

McCrink, K., & Wynn, K. (2007). Ratio abstraction by 6-month-old infants. Psychological Science, 18, 740–745.

https://doi.org/10.1111/j.1467-9280.2007.01969.x

Merritt, D. J, DeWind, N. K., & Brannon, E. M. (2012). Comparative cognition of number representation. In T. R. Zentall & E. A. Wasserman (Eds.), The oxford handbook of comparative cognition (s. 451–476). 2. vyd. New York: Oxford University Press.

https://doi.org/10.1093/oxfordhb/9780195392661.013.0024

Mussolin, C., Mejias, S., & Noël, M. P. (2010). Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition, 115(1), 10–25.

https://doi.org/10.1016/j.cognition.2009.10.006

Negen, J., & Sarnecka, B. W. (2015). Is there really a link between exact-number knowledge and approximate number system acuity in young children? British Journal of Developmental Psychology, 33, 92–105.

https://doi.org/10.1111/bjdp.12071

Nieder, A. (2013). Coding of abstract quantity by 'number neurons' of the primate brain. Journal of Comparative Physiology A, 199, 1–16.

https://doi.org/10.1007/s00359-012-0763-9

Nieder, A. & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185–208.

https://doi.org/10.1146/annurev.neuro.051508.135550

Owen, A. M., Hampshire, A., Grahn, J. A., Stenton, R., Dajani, S., Burns, A. S., Howard, R. J. & Ballard, G. C. (2010). Putting brain training to the test. Nature, 465(7299), 775–778.

https://doi.org/10.1038/nature09042

Park, J., & Brannon, E. M. (2013). Training the approximate number system improves math proficiency. Psychological Science, 24, 2013–2019.

https://doi.org/10.1177/0956797613482944

Park, J., Brannon, E. M. (2014). Improving arithmetic performance with number sense training: an investigation of underlying mechanism. Cognition, 133, 188–200.

https://doi.org/10.1016/j.cognition.2014.06.011

Park, J., Bermudez, V., Roberts, R. C., & Brannon, E. M. (2016). Non-symbolic approximate arithmetic training improves math performance in preschoolers. Journal of Experimental Child Psychology, 152(12), 278–293.

https://doi.org/10.1016/j.jecp.2016.07.011

Piaget, J. (1954). The construction of reality in the child. New York: Ballentine.

https://doi.org/10.1037/11168-000

Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547–555.

https://doi.org/10.1016/j.neuron.2004.10.014

Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., et al. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33–41.

https://doi.org/10.1016/j.cognition.2010.03.012

Piazza, M., Mechelli, A., Price, C. J., Butterworth, B. (2006). Exact and approximate judgements of visual and auditory numerosity: An fMRI study. Brain Research, 1106(1), 177–188.

https://doi.org/10.1016/j.brainres.2006.05.104

Pinel, P., Dehaene, S., Riviere, D., & LeBihan, D. (2001). Modulation of parietal activation by semantic distance in a number comparison task. Neuroimage, 14, 1013–1026.

https://doi.org/10.1006/nimg.2001.0913

Plassová, M., Tesař, M., Vavrečka, M., & Valuchová, K. (2016). Approximate number system in children. In M. McGreevy & R. Rita (Eds.), Proceedings of the 6th Biannual CER Comparative European Research Conference (182–187). London: Science.

Plháková, A. (2009). Učebnice obecné psychologie. Praha: Academia.

Price, G. R., Palmer, D., Battista, C., & Ansari, D. (2012). Nonsymbolic numerical magnitude comparison: Reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults. Acta Psychologica, 140(1), 50–57.

https://doi.org/10.1016/j.actpsy.2012.02.008

Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D., Hambrick, D. Z., Kane, M. J. & Engle, R. W. (2013). No evidence of intelligence improvement after working memory training: a randomized, placebo-controlled study. Journal of Experimental Psychology, 142, 359–379.

https://doi.org/10.1037/a0029082

Roitman, J. D., Brannon, E. M., & Platt, M. L. (2012). Representation of numerosity in posterior parietal cortex. Frontiers in Integrative Neuroscience, 6, 25.

https://doi.org/10.3389/fnint.2012.00025

Rotzer, S., Kucian, K., Martin, E., von Aster, M., Klaver, P., & Loenneker, T. (2008). Optimized voxel-based morphometry in children with developmental dyscalculia. Neuroimage, 39, 417–422.

https://doi.org/10.1016/j.neuroimage.2007.08.045

Rotzer, S., Loenneker, T., Kucian, K., Martin, E., Klaver, P., & von Aster, M. (2009). Dysfunctional neural network of spatial working memory contributes to developmental dyscalculia. Neuropsychologia, 47, 2859–2865.

https://doi.org/10.1016/j.neuropsychologia.2009.06.009

Rykhlevskaia, E., Uddin, L. Q., Kondos, L., & Menon, V. (2009). Neuroanatomical correlates of developmental dyscalculia: combined evidence from morphometry and tractography. Frontiers in Human Neuroscience, 3(51), 1â13.

https://doi.org/10.3389/neuro.09.051.2009

Samková, L. (2013). Využití programu GeoGebra při nácviku odhadů. Sborník 6. konference Užití počítačů ve výuce matematiky, s. 323â336.

Sasanguie, D., Defever, E., Maertens, B., & Reynvoet, B. (2013). The approximate number system is not predictive for symbolic number processing in kindergartners. Quarterly Journal of Experimental Psychology, 1–26.

Sasanguie, D., Gobel, S. M., Moll, K., Smets, K., & Reynvoet, B. (2013). Approximate number sense, symbolic number processing, or number-space mappings: What underlies mathematics achievement? Journal of Experimental Child Psychology, 114(3), 418–431.

https://doi.org/10.1016/j.jecp.2012.10.012

Schacter, D. L., Gilbert, D. T., & Wegner, D. M. (2010). Psychology (2. vyd.). New York: Worth.

Sousa, D. (2010). Mind, brain, and education: Neuroscience implications for the classroom. Bloomington, IN: Solution Tree.

Spaepen, E., Coppola, M., Spelke, E. S., Carey, S. E., & Goldin-Meadow, S. (2011). Number without a language model. Proceeding of the National Academy of Sciences of the USA, 108, 3163–3168.

https://doi.org/10.1073/pnas.1015975108

Starkey, P., & Cooper, R. G. (1980). Perception of numbers by human infants. Science, 210, 1033–1035.

https://doi.org/10.1126/science.7434014

Tibber, M. S., Manasseh, G. S., Clarke, R. C., Gagin, G., Swanbeck, S. N., Butterworth, B., et al. (2013). Sensitivity to numerosity is not a unique visuospatial psychophysical predictor of mathematical ability. Vision Research, 89, 1–9.

https://doi.org/10.1016/j.visres.2013.06.006

Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74, B1–B11.

https://doi.org/10.1016/S0010-0277(99)00066-9

Wang, J., Odic, D., Halberda, J. & Feigenson, L. (2016). Changing the precision of preschoolers' approximate number system representations changes their symbolic math performance. Journal of Experimental Child Psychology, 147, 82â99.

https://doi.org/10.1016/j.jecp.2016.03.002

Wilson, M. L., Hauser, M. D., & Wrangham, R. W. (2001). Does participation in intergroup conflict depend on numerical assessment, range location, or rank for wild chimpanzees? Animal Behaviour, 61, 1203–1216.

https://doi.org/10.1006/anbe.2000.1706

Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749–750.

https://doi.org/10.1038/358749a0

Published

2017-08-16

Issue

Section

Papers